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PHYSICAL MEASURES AND ABSOLUTE CONTINUITY

FOR ONE-DIMENSIONAL CENTER DIRECTION

MARCELO VIANA1 AND JIAGANG YANG2,1

Abstract. For a class of partially hyperbolic Ck, k > 1 diffeomorphisms
with circle center leaves we prove existence and finiteness of physical (or Sinai-
Ruelle-Bowen) measures, whose basins cover a full Lebesgue measure subset
of the ambient manifold. Our conditions contain an open and dense subset of
all Ck partially hyperbolic skew-products on compact circle bundles.

Our arguments blend ideas from the theory of Gibbs states for diffeomor-
phisms with mostly contracting center direction together with recent progress
in the theory of cocycles over hyperbolic systems that call into play geometric
properties of invariant foliations such as absolute continuity. Recent results
show that absolute continuity of the center foliation is often a rigid property

among volume preserving systems. We prove that this is not at all the case in
the dissipative setting, where absolute continuity can even be robust.
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1. Introduction

Let f : N → N be a diffeomorphism on some compact Riemannian manifold N .
An invariant probability µ is a physical (Sinai, Ruelle, Bowen) measure for f if the
set of points z ∈ N for which

(1)
1

n

n−1∑

j=0

δfi(z) → µ (in the weak∗ sense)

has positive volume. This set is denoted B(µ) and called the basin of µ. A program
for investigating the physical measures of partially hyperbolic diffeomorphisms was
initiated by Alves, Bonatti, Viana in [5, 19], who proved existence and finiteness
when f is either “mostly expanding” (asymptotic forward expansion) or “mostly
contracting” (asymptotic forward contraction) along the center direction.
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In this paper we analyze the existence and finiteness problem without a priori
conditions on the behavior along the center direction, in the case when the center
bundle has dimension 1. Our results are illustrated by the following example.

Suppose N = M × S1, for some compact manifold M , and f0 : N → N is a
partially hyperbolic skew-product

(2) f0 : M × S1 → M × S1, f0(x, θ) = (g0(x), h0(x, θ))

with center bundle Ec coinciding with the vertical direction {0} × TS1 at every
point. This implies g0 is an Anosov diffeomorphism, and we also take it to be
transitive (all known Anosov diffeomorphisms being transitive). Assume f0 is of
class Ck for some k > 1, not necessarily an integer.

Theorem A. There exists a Ck neighborhood U0 of f0 such that for every f ∈ U0

which is accessible and whose center stable foliation is absolutely continuous there
exists a finite number of physical measures. These measures are ergodic, the union
of their basins has full volume in N , and the center Lyapunov exponents are either
negative or zero. In the latter (zero) case the physical measure is unique.

The subset of accessible diffeomorphisms is C1 open and Ck dense in the neigh-
borhood of f0 (Theorem 1.5 of Niţicǎ, Török [32]). Absolute continuity is also quite
common in this context as we are going to see. That is surprising, since Avila,
Viana, Wilkinson [14] have recently shown that absolute continuity of the center
foliation is a rigid property for volume preserving perturbations of skew-products.
In contrast, here we prove

Theorem B. Suppose f0 exhibits some periodic vertical leaf ℓ such that f
per(ℓ)
0 | ℓ

is Morse-Smale with a unique periodic attractor and repeller. Then f0 is in the
closure of an open set V of Ck diffeomorphisms such that for every f ∈ V,

• the center stable, the center unstable, and the center foliation are absolutely
continuous

• both f and its inverse have a unique physical measure, whose basin has full
Lebesgue measure in N .

Then the same is true for f0 = g0 × id, since it is Ck approximated by diffeo-
morphisms as in the hypothesis of the theorem.

Although we are primarily interested in general (dissipative) diffeomorphisms,
our methods also shed some light on the issue of absolute continuity in the volume
preserving context. Let λc(f) denote the integrated center Lyapunov exponent of
f relative to the Lebesgue measure.

Theorem C. For any small C1 neighborhood W of f0 = g0 × id in the space of
volume preserving diffeomorphisms of N ,

(1) the subset W0 of diffeomorphisms f ∈ W such that λc(f) 6= 0 is C1 open
and dense in W;

(2) if f ∈ W0 and λc(f) > 0 then the center foliation and the center stable
foliation are not (even upper leafwise) absolutely continuous;

(3) there exists a non-empty C1 open set W1 ⊂ {f ∈ W0 : λc(f) > 0} such that
the center unstable foliation of every g ∈ W1 is absolutely continuous.

Claims (2) and (3) remain true when λc(f) < 0, if one exchanges center stable
with center unstable. Every Ck, k > 1 diffeomorphism f ∈ W1 has a Ck neighbor-
hood Wf in the space of all (possibly dissipative) diffeomorphisms where the center
unstable foliation remains absolutely continuous.

Theorems A and B follow from more detailed statements that we present in the
next section, where we also recall the main notions involved. A discussion of the
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volume preserving case is given in Section 7.3, including the proof of Theorem C
and a (partly conjectural) scenario.

2. Statement of results

Let Pk
∗ (N) be the space of partially hyperbolic, dynamically coherent, Ck diffeo-

morphisms whose center leaves are compact, with any dimension, and form a fiber
bundle. Unless otherwise stated, we always assume k > 1. Most of our results con-
cern the subspace Pk

1 (N) of diffeomorphisms with 1-dimensional center dimension.
Let us begin by recalling the notions involved in these definitions.

2.1. Basic concepts. A diffeomorphism f : N → N is partially hyperbolic if there
exists a continuous Df -invariant splitting TN = Eu ⊕ Ec ⊕ Es and there exist
constants C > 0 and λ < 1 such that

(a) ‖Df−n
x (vu)‖ ≤ Cλn and ‖Dfn

x (v
s)‖ ≤ Cλn

(b) ‖Df−n
x (vu)‖ ≤ Cλn‖Df−n

x (vc)‖ and ‖Dfn
x (v

s)‖ ≤ Cλn‖Dfn
x (vc)‖

for all unit vectors vu ∈ Eu
x , v

c ∈ Ec
x, v

s ∈ Es
x, and all x ∈ N and n ≥ 0. Condition

(a) means that the derivative Df is uniformly expanding along Eu and uniformly
contracting along Es. Condition (b) means that the behavior of Df along the
center bundle Ec is dominated by the behavior along the other two factors. Here
all three bundles are assumed to have positive dimension.

The bundles Eu and Es are always integrable: there exist foliations Wu and Ws

of N tangent to Eu and Es, respectively, at every point. In fact these foliations
are unique. Moreover, they are absolutely continuous, meaning that the projections
along the leaves between any two cross-sections preserve the class of sets with zero
volume inside the cross-section. See [20, 28, 42]. A diffeomorphism f : N → N
is dynamically coherent if the bundles Ecu = Ec ⊕ Eu and Ecs = Ec ⊕ Es also
admit integral foliations, Wcu and Wcs. Then, intersecting their leaves one obtains
a center foliation Wc tangent at every point to the center bundle Ec.

We say that the center leaves form a fiber bundle over the leaf space N/Wc

if for any Wc(x) ∈ N/Wc there is a neighborhood V ⊂ N/Wc of Wc(x) and a
homeomorphism

hx : V ×Wc(x) → π−1
c (V )

smooth along the verticals {ℓ} ×Wc(x) and mapping each vertical onto the corre-
sponding center leaf ℓ.

Remark 2.1. The fiber bundle condition is probably not necessary. Indeed, when
the diffeomorphisms are volume preserving, Avila, Viana, Wilkinson [14] prove that
if dimEc = 1 and the generic center leaves are circles then the center leaves form a
fiber bundle up to a finite cover. In particular, all leaves are circles. Our arguments
extend easily to this situation.

A partially hyperbolic diffeomorphism f : N → N is accessible if any points z,
w ∈ N can be joined by a piecewise smooth curve γ such that every smooth leg of
γ is tangent to either Eu or Es at every point. Equivalently, every smooth leg of
the curve γ is contained in a leaf of either Wu or Ws.

The center Lyapunov exponent λc(µ) of an f -invariant probability measure µ is
defined by

(3) λc(µ) =

∫
λc(z) dµ(z) where λc(z) = lim

n→∞

1

n
log |Dfn | Ec

z |.

By the ergodic theorem, this may be rewritten

(4) λc(µ) =

∫
log |Df | Ec

z| dµ(z).
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If µ is ergodic then λc(µ) = λc(z) for µ-almost every z.
Finally, the center direction is mostly contracting (Bonatti, Viana [19]) if

(5) lim sup
n→+∞

1

n
log ‖Dfn | Ec

x‖ < 0.

for a positive volume measure subset of any disk inside a strong unstable leaf. It
was shown by Andersson [9] that this is a Ck, k > 1 open property.

2.2. The leaf space. Let d be the Riemannian distance on N . We endow the leaf
space N/Wc with the distance defined by

dc(ξ, η) = sup
x∈ξ

inf
y∈η

d(x, y) + sup
y∈η

inf
x∈ξ

d(x, y) for each ξ, η ∈ N/Wc.

The quotient map πc : (N, d) → (N/Wc, dc) is continuous and onto. In particular,
the metric space (N/Wc, dc) is compact.

Let fc : N/Wc → N/Wc be the map induced by f on the quotient space N/Wc.
The stable set of a point ξ ∈ N/Wc for fc is defined by

W s(ξ) = {η ∈ N/Wc : dc(f
n
c (ξ), f

n
c (η)) → 0 when n → +∞}

and the local stable set of size ε > 0 is defined by

W s
ε (ξ) = {η ∈ N/Wc : dc(f

n
c (ξ), f

n
c (η)) ≤ ε for all n ≥ 0}.

The unstable set and local unstable set of size ε > 0 are defined in the same way,
for backward iterates. It follows from the definitions that there exist constants K,
τ , ε, δ > 0 such that

(1) dc(f
n
c (η1), f

n
c (η2)) ≤ Ke−τndc(η1, η2) for all η1, η2 ∈ W s

ε (ξ), n ≥ 0;
(2) dc(f

−n
c (ζ1), f

−n
c (ζ2)) ≤ Ke−τndc(ζ1, ζ2) for all ζ1, ζ2 ∈ Wu

ε (ξ), n ≥ 0;
(3) if dc(ξ1, ξ2) ≤ δ then W s

ε (ξ1) and Wu
ε (ξ2) intersect at exactly one point,

denoted [ξ1 ξ2] and this point depends continuously on (ξ1, ξ2).

This means that fc is a hyperbolic homeomorphism (in the sense of Viana [48]).
We denote Wc(Λ) = π−1

c (Λ), for any subset Λ of N/Wc.
By Anosov’s closing lemma [10], periodic points are dense in the non-wandering

set of fc. Smale’s spectral decomposition theorem [45], the non-wandering set splits
into a finite number of compact, invariant, transitive, pairwise disjoint subsets.
Among these basic pieces of the non-wandering set, the attractors Λi, i = 1, . . . , k
of fc are characterized by the fact that

Λi =

∞⋂

n=0

fn
c (Ui)

for some neighborhood Ui of Λi and it is transitive. The union of the stable sets
W s(Λi), i = 1, . . . , k is an open dense subset of N/Wc. Every attractor Λi consists
of entire unstable sets, and so Wc(Λi) is Wu-saturated, that is, it consists of entire
strong unstable leaves of f . Additionally, every Λi has finitely many connected
components Λi,j , j = 1, . . . , ni that are mapped to one another cyclically. The
unstable set Wu(x) of every x ∈ Λi,j is contained and dense in Λi,j . In particular,
Wc(Λi,j) is also Wu-saturated. If fc is transitive, there is a unique attractor Λ1 =
N/Wc.

We say f is accessible on Λi if, for every j, any points z, w ∈ Wc(Λi,j) can be
joined by a piecewise smooth curve γ such that every smooth leg of γ is tangent to
either Eu or Es at every point and the corner points belong to the same Wc(Λi,j).
The center direction of f | Wc(Λi) is mostly contracting if (5) holds for a positive
volume measure subset of any disk inside a strong unstable leaf contained inWc(Λi).
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2.3. Physical measures. We are ready to state our main result on existence and
finiteness of physical measures:

Theorem D. If f ∈ Pk
1 (N), k > 1 is accessible on every attractor and the center

stable foliation is absolutely continuous then, for each attractor Λi, either

(a) there is a Lipschitz metric on each leaf of Wc(Λi), depending continuously
on the leaf and invariant under f ; then f admits a unique physical measure,
which is ergodic, whose basin has full volume in the stable set of Wc(Λi),
and whose center Lyapunov exponent vanishes;

(b) or the center direction of f | Wc(Λi) is mostly contracting; then f | Wc(Λi)
has finitely many physical measures, they are ergodic for f and Bernoulli
for some iterate, the union of their basins is a full volume subset of the
stable set of Wc(Λi), and their center Lyapunov exponents are negative.

The union of the basins of these physical measures has full volume in N .

To see that Theorem A is contained in Theorem D let us to note that, for every
k ≥ 1, any Ck partially hyperbolic skew-product f0 is in the interior of Pk

1 (N).
Indeed, partial hyperbolicity is well known to be a C1 open property and the
stability theorem for normally hyperbolic foliations (Hirsch, Pugh, Shub [28]) gives
that every f in a C1 neighborhood of f0 admits an invariant W∗

f foliation, for

each ∗ ∈ {cu, cs, c}, and there exists a homeomorphism mapping the leaves of W∗
f

diffeomorphically to the leaves of W∗
f0
. In particular, the center leaves of f form a

circle fiber bundle.

Remark 2.2. When the center fiber bundle is trivial, as happens near skew-products,
part (a) of the Theorem D gives that f | Wc(Λi) is topologically conjugate to a
rotation extension

Λi × R/Z → Λi × R/Z, (x, θ) 7→ (fc(x), θ + ω(x)).

To see this, fix some consistent orientation of the center leaves and any continuous
section σ : N/Wc → N of the center foliation, that is, any continuous map such
that σ(ℓ) ∈ ℓ for every ℓ ∈ N/Wc. Then define

h : Wc(Λi) → Λi × R/Z, h(z) = (πc(z), |σ(πc(z)), z|)

where |σ(πc(z)), z| denotes the length, with respect to the f -invariant Lipschitz
metric, of the (oriented) curve segment from σ(πc(z)) to z inside the center leaf.
This map sends the center leaves of f to verticals {w} × R/Z, mapping the f -
invariant Lipschitz metric on the center leaves to the standard metric on R/Z.
Then h ◦ f ◦ h−1 preserves the standard metric measure on the verticals, and so it
is a rotation extension, as stated. Observe that, in addition, both h and its inverse
are Lipschitz on every leaf.

Explicit bounds on the number of physical measures can be given in many cases.
For instance, we will see in Theorem 5.3 that if f admits some periodic center leaf ℓ
restricted to which f is Morse-Smale then the number of physical measures over the
attractor containing πc(ℓ) is bounded by the number of periodic orbits on ℓ. Notice
that we must have alternative (b) of Theorem D in this case, since alternative (a)
is incompatible with the existence of hyperbolic periodic points.

We also want to analyze the dependence of the physical measures on the dy-
namics. For this, we assume N = M × S1 and restrict ourselves to the subset
Sk(N) ⊂ Pk

1 (N) of skew-product maps. We prove in Theorem 5.6 that there is
an open and dense subset of diffeomorphisms f ∈ Sk(N) with mostly contracting
center direction, such that the number of physical measures is locally constant and
the physical measures vary continuously with the diffeomorphism. This property of
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statistical stability has been studied in a number of recent works, including Alves,
Viana [8], Vásquez [47], Andersson [9].

As mentioned before, existence and finiteness of physical measures for partially
hyperbolic diffeomorphisms was proved by Alves, Bonatti, Viana [5, 19], under
certain assumptions of weak hyperbolicity along the center direction. Substan-
tial improvements followed, by Alves, Luzzatto, Pinheiro [6, 7], Alves, Araujo [4],
Vasquez [47], Pinheiro [36], and Andersson [9], among others. Perturbations of cer-
tain skew-products over hyperbolic maps have been studied by Alves [2, 3], Buzzi,
Sestier, Tsujii [23], and Gouezel [25]. In a remarkable recent paper, Tsujii [46]
proved that generic (dense Gδ) partially hyperbolic surface endomorphisms do ad-
mit finitely many physical measures, such that the union of their basins has full
Lebesgue measure. His approach is very different from the one in the present paper
and it is not clear how it could be extended to diffeomorphisms in higher dimensions,
even in the case of one-dimensional center bundle.

2.4. Absolute continuity. It has been pointed out by Shub, Wilkinson [44] that
foliations tangent to the center subbundle Ec are often not absolutely continuous.
In fact, Ruelle, Wilkinson [41] showed that the disintegration of Lebesgue measure
along the leaves is often atomic. Moreover, Avila, Viana, Wilkinson [14] observed
recently that for certain classes of volume preserving diffeomorphisms, including
perturbations of skew-products (2), absolute continuity of the center foliation is a
rigid property: it implies that the center foliation is actually smooth, and the map
is smoothly conjugate to a rigid model.

However, we prove that this is not at all the case in our dissipative setting:

Theorem E. There is an open set U ⊂ Pk
1 (N), k > 1, such that the center stable,

the center unstable, and the center foliation are absolutely continuous for every
f ∈ U . Moreover, U may be chosen to accumulate on every skew-product map f0
that admits a periodic vertical fiber restricted to which the map is Morse-Smale with
a unique periodic attractor and repeller.

Two weaker forms of absolute continuity are considered by Avila, Viana, Wilkin-
son [14]. Let vol denote Lebesgue measure in the ambient manifold and volL be
Lebesgue measure restricted to some submanifold L. A foliation F on N is (lower)
leafwise absolutely continuous if for every zero vol-measure set Y ⊂ N and vol-
almost every z ∈ M , the leaf L through z meets Y in a zero volL-measure set.
Similarly, F is upper leafwise absolutely continuous if volL(Y ) = 0 for every leaf
L through a full measure subset of points z ∈ M implies vol(Y ) = 0. Absolute
continuity implies both lower and upper leafwise absolute continuity (see [14, 21]);
the converse is not true in general. We will see in Proposition 6.2 that the center
stable foliation of a partially hyperbolic, dynamically coherent diffeomorphism with
mostly contracting center direction is always upper leafwise absolutely continuous.
This does not extend to lower leafwise absolutely continuity, in general: robust
counter-examples will appear in [49]; see also Example 6.1 for a related construc-
tion. However, as stated before, full absolute continuity of the center foliation does
hold on some open subsets of diffeomorphisms with mostly contracting center.

3. Gibbs u-states

Let f : N → N be a partially hyperbolic diffeomorphism. In what follows we
denote Ir = [−r, r] for r > 0 and d∗ = dimE∗ for each ∗ ∈ {u, cu, c, cs, s}. We use
vol∗ to represent the volume measure induced by the restriction of the Riemannian
structure on the leaves of the foliation W∗ for each ∗ ∈ {u, cu, c, cs, s}.
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Following Pesin, Sinai [34] and Alves, Bonatti, Viana [5, 19] (see also [17, Chap-
ter 11]), we call Gibbs u-state any invariant probability measure m whose con-
ditional probabilities (Rokhlin [40]) along strong unstable leaves are absolutely
continuous with respect to the volume measure volu on the leaf. More precisely, let

Φ : Idu

1 × Idcs

1 → N

be any foliated box for the strong unstable foliation. By this we mean that Φ is
a homeomorphism and maps every horizontal plaque Idu

1 × {η} diffeomorphically
to a disk inside some strong unstable leaf. Pulling m back under Φ one obtains a
measure mΦ on Idu

1 × Idcs

1 . The definition of Gibbs u-state means that there exists

a measurable function αΦ(· , ·) ≥ 0 and a measure mcs
Φ on Idcs

1 such that

(6) mΦ(A) =

∫

A

αΦ(ξ, ζ) dξ dm
cs
Φ (ζ)

for every measurable set A ⊂ Idu

1 × Idcs

1 .
Proofs for the following basic properties of Gibbs u-states can be found in Sec-

tion 11.2 of Bonatti, Dı́az, Viana [17]:

Proposition 3.1. Let f : N → N be a partially hyperbolic diffeomorphism.

(1) The densities of a Gibbs u-state with respect to Lebesgue measure along
strong unstable plaques are positive and bounded from zero and infinity.

(2) The support of every Gibbs u-state is Wu-saturated, that is, it consists of
entire strong unstable leaves.

(3) The set of Gibbs u-states is non-empty, weak∗ compact, and convex. Ergodic
components of Gibbs u-states are Gibbs u-states.

(4) Every physical measure of f is a Gibbs u-state and, conversely, every ergodic
u-state whose center Lyapunov exponents are negative is a physical measure.

Now let f ∈ Pk
∗ (N). Recall that πc : N → N/Wc denotes the natural quotient

map and fc : N/Wc → N/Wc is the hyperbolic homeomorphism induced by f in
the leaf space. Given small neighborhoods V s

ξ ⊂ W s
ε (ξ) and V u

ξ ⊂ Wu
ε (ξ) inside

the corresponding stable and unstable sets, the map

(7) (η, ζ) 7→ [η, ζ]

defines a homeomorphism between V u
ξ × V s

ξ and some neighborhood Vξ of ξ. A

probability measure µ on N/Wc has local product structure if for µ-almost every
point ξ and any such product neighborhood Vξ the restriction µ | Vξ is equivalent
to a product νu × νs, where νu is a measure on V u

ξ and νs is a measure on V s
ξ .

In the sequel we prove three additional facts about Gibbs u-states that are im-
portant for our arguments.

Proposition 3.2. Take f ∈ Pk
∗ (N), k > 1 such that the center stable foliation

is absolutely continuous. For every ergodic Gibbs u-state m the support of the
projection (πc)∗(m) coincides with some attractor of fc. In particular, periodic
points are dense in the support of (πc)∗(m).

Moreover, any two such projections with the same support must coincide. In
particular, the set of projections of all ergodic Gibbs u-states of f down to N/Wc

is finite.

Proposition 3.3. Take f ∈ Pk
∗ (N), k > 1 such that the center stable foliation is

absolutely continuous. If m is a Gibbs u-state for f then µ = (πc)∗(m) has local
product structure.
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Remark 3.4. Suppose f is volume preserving. The Lebesgue measure vol is both an
s-state and a u-state, because the strong stable foliation and the strong unstable fo-
liation are both absolutely continuous. Thus, Proposition 3.3 implies that (πc)∗(m)
has local product structure if either Wcu or Wcs is absolutely continuous.

Proposition 3.5. Let f ∈ Pk
∗ (N), k > 1 and Λ be an attractor of fc. Suppose the

center stable foliation of f is absolutely continuous and f is accessible on Λ. Then
every ergodic Gibbs u-state of f supported in Wc(Λ) has some non-positive center
Lyapunov exponent.

As a special case, we get that if f ∈ Pk
1 (N), k > 1 is accessible on an attractor

Λ of fc and the center stable foliation is absolutely continuous, then the (unique)
center Lyapunov exponent of every ergodic Gibbs u-state supported in Wc(Λ) is
non-positive.

The proofs of these propositions are given in Sections 3.1 through 3.3.

3.1. Finiteness in leaf space. Here we prove Proposition 3.2. Let m1 be any
ergodic Gibbs u-state and µ1 = (πc)∗(m1). Notice that µ1 is ergodic and so its
support is a transitive set for fc. Moreover, suppµ1 = πc(suppm1) consists of
entire unstable sets, because the support of m1 is Wu-saturated (Proposition 3.1).
Thus, suppµ1 is an attractor Λ of fc. As pointed out before, periodic points are
dense in each attractor of fc.

Now we only have to show that if µ2 = (πc)∗m2 for another ergodic Gibbs u-
state m2 and suppµ2 = Λ = suppµ1 then µ1 = µ2. For this, take xc ∈ Λ, let Uc be
a neighborhood of xc in the quotient space N/Wc, and let U = π−1

c (Uc). Then U
has positive mi-measure for i = 1, 2. So, since the mi are ergodic Gibbs u-states,
there are disks Di ⊂ U , i = 1, 2 contained in strong unstable leaves and such that
Lebesgue almost every point in Di is in the basin B(mi) of mi. Moreover, these
disks may be chosen such that the center stable foliation induces a holonomy map
hcs : D1 → D2. Since the center stable foliation is absolutely continuous, it follows
that hcs maps some point x1 ∈ D1 ∩ B(m1) to a point x2 ∈ D2 ∩ B(m2) in the
basin of m2. Then x1 and x2 belong to the same center stable leaf of f , and so
their projections πc(x1) and πc(x2) belong to the same stable set of fc. Notice that
πc(B(mi)) ⊂ B(µi) for i = 1, 2, and so each point π(xi) ∈ B(µi). Since either basin
consists of entire stable sets, this proves that B(µ1) and B(µ2) intersect each other,
and so µ1 = µ2. This completes the proof of Proposition 3.2.

3.2. Local product structure. Here we prove Proposition 3.3. Let m be any
Gibbs u-state and ℓ0 be any center leaf. Since the center leaves form a fiber bundle,
we may find a neighborhood V ⊂ N/Wc and a homeomorphism

φ : V × ℓ0 7→ π−1
c (V ), (ℓ, ζ) 7→ φ(θ, ζ)

that maps each vertical {ℓ}× ℓ0 to the corresponding center leaf ℓ. Clearly, we may
choose V to be the image of the bracket (recall Section 2.2)

Wu
ε (ℓ0)×W s

ε (ℓ0) → V, (ξ, η) 7→ [ξ, η]

for some small ε > 0. Then, by dynamical coherence, the homeomorphism

(8) Wu
ε (ℓ0)×W s

ε (ℓ0)× ℓ0 → π−1
c (V ), (ξ, η, ζ) 7→ φ([ξ, η], ζ)

maps each {ξ} ×W s
ε (ℓ0)× ℓ0 onto a center stable leaf and each Wu

ε (ℓ0)× {η} × ℓ0
onto a center unstable leaf. For each x ∈ π−1

c (V ), let Wu
loc(x) denote the local

strong unstable leaf over V , that is, the connected component of Wu(x) ∩ π−1
c (V )

that contains x. Each Wu
loc(x) is a graph over the unstable set Wu(πc(x)) and the

center stable holonomy defines a homeomorphism

hcs
x,y : Wu

loc(x) → Wu
loc(y)
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between any two local strong unstable leaves. By assumption, all these homeomor-
phisms are absolutely continuous. Now let

m | π−1
c (V ) =

∫
mx dm̂

be the disintegration of m relative to the partition of π−1
c (V ) into local strong un-

stable leaves. By definition of Gibbs u-states, each mx is equivalent to the Lebesgue
measure along Wu

loc(x). It follows that the center stable holonomies are absolutely
continuous relative to the conditional probabilities of m along local strong unstable
leaves:

(9) mx(E) = 0 if and only if my(h
cs
x.y(E)) = 0

for x and y in some full m-measure subset of π−1
c (V ) and for any measurable set

E ⊂ Wu
loc(x). By the construction of (8), center stable holonomies preserve the

coordinate ξ. Thus, identifying π−1
c (V ) with the spaceWε(ℓ0)×W s

ε (ℓ0)×ℓ0 through
the homeomorphism (8), property (9) becomes

(10) mx(A×W s
ε (ℓ0)× ℓ0) = 0 if and only if my(A×W s

ε (ℓ0)× ℓ0) = 0

for any measurable set A ⊂ Wu
ε (ℓ0) and for m-almost every x and y in π−1

c (V ).
Let µ | V =

∫
µu
η dµ

s(η) be the disintegration of µ relative to the partition of V
into unstable slices Wu(ℓ0) × {η}; notice that µs is just the projection of µ | V
to W s

ε (ℓ0). Projecting m | π−1
c (V ) down to V ≈ Wu

ε (ℓ0) ×W s
ε (ℓ0), property (10)

yields

(11) µη(A×W s
ε (ℓ0)) = 0 if and only if µη′(A×W s

ε (ℓ0)) = 0

for any measurable set A ⊂ Wu
ε (ℓ0) and for µ-almost every η and η′ in V . This

means that the conditional probabilities µu
η are (almost) all equivalent. Conse-

quently, there is ρ : Wu
ε (ℓ0)×W s

ε (ℓ0) → (0,∞) such that µu
η = ρ(·, η)µu at µ-almost

every point, where µu denotes the projection of µ | V to Wu
ε (ℓ0). Replacing in the

disintegration of µ | V , we get that µ | V = ρ µu × µs. This proves that µ has local
product structure, as claimed.

3.3. Positive Gibbs u-states. Here we prove Proposition 3.5. We begin by prov-
ing the following fact, which is interesting in itself:

Proposition 3.6. For f ∈ P1
∗ (N), given c > 0 and l ≥ 1 there is n0 such that

#
(
S ∩ Γc,l

)
< n0 for every center leaf S, where

Γc,l = {x ∈ N : lim inf
1

n

n∑

i=1

log ‖Df−l | Ec(f il(x))‖−1 ≥ c}.

Proof. Recall that volc denotes the Riemannian volume on center leaves. The main
ingredient is

Lemma 3.7. Given c > 0 and l ≥ 1 there exists δ > 0 such that for any x ∈ S∩Γc,l

and any neighborhood U of x inside the center leaf S that contains x, one has

lim inf
1

n

n−1∑

i=0

volc(f il(U)) ≥ δ.

Proof. Let x ∈ S ∩ Γc,l be fixed. Fix 0 < c1 < c2 < c and define H(c2) to be the
set of c2-hyperbolic times for x, that is, the set of times m ≥ 1 such that

(12)
1

k

m∑

i=m−k+1

log ‖Df−l | Ec
fil(x)‖

−1 ≥ c2 for all 1 ≤ k ≤ m.
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By the Pliss Lemma (see [2, 5]) , there exist n1 ≥ 1 and δ1 > 0 such that

#
(
H(c2) ∩ [1, n)

)
≥ nδ1 for all n ≥ n1.

Notice that (12) implies Df−kl is an exponential contraction on Ec
fml(x):

‖Df−kl | Ec
fml(x)‖ ≤

m∏

i=m−k+1

‖Df−l | Ec
fil(x)‖ ≤ e−c2k for all 1 ≤ k ≤ m.

It also follows from [5] that the points fml(x) with m ∈ H(c2) admit backward-
contracting center disks with size uniformly bounded from below: there is r > 0
depending only on f and the constants c1 and c2 such that

f−kl(Bc
r(f

ml(x))) ⊂ Bc
e−c1kr(f

(m−k)l(x)) for all 1 ≤ k ≤ m.

where Bc
ρ(y) denotes the ball inside Wc

y of radius ρ around any point y. Let a1 > 0
be a lower bound for mc(Bc

r(y)) over all y ∈ N . Fix n2 such that the ball of radius
e−c1kr around x is contained in U for every k ≥ n2. Then, in particular,

fml(U) ⊃ Bc
r(f

ml(x)) and so mc(fml(U)) ≥ a1

for every m ∈ H(c2) with m ≥ n2. So, for n ≫ max{n1, n2},

1

n

n−1∑

i=0

mc(f il(U)) ≥
1

n
a1
[
#(H(c2) ∩ [1, n))− n2

]
≥

1

n
a1
[
nδ1 − n2

]
≥

δ1
2
a1 .

To finish the proof of Lemma 3.7 it suffices to take δ = a1δ2/2. �

To deduce Proposition 3.6 from Lemma 3.7, take any n0 ≥ V/δ where V is an
upper bound for the volume of center leaves. Suppose S ∩ Γc,l contains n0 distinct
points xj , j = 1, . . . , n0. Let Uj, j = 1, . . . , n0 be pairwise disjoint neighborhoods
of the xj inside S. Take n large enough that

1

n

n−1∑

i=0

mc(f i(Uj)) > δ for 1 ≤ j ≤ n0.

Then

V ≥
1

n

n−1∑

i=0

mc(f i(S)) ≥
n0∑

j=1

1

n

n−1∑

i=0

mc(f i(Uj)) > n0δ > V.

This contradiction proves Proposition 3.6. �

Proof of Proposition 3.5. We argue by contradiction. Suppose there exists some
ergodic Gibbs u-state ν supported in Wc(Λ) whose center Lyapunov exponents are
all positive.

Lemma 3.8. There is k0 ≥ 1 and some ergodic Gibbs u-state ν∗ of fk0 supported
in Wc(Λ) such that

(13)

∫
log ‖Df−k0 | Ec

x‖
−1dν∗(x) > 0.

Proof. Arguing as in [48, Section 2.1] one can find k0 ≥ 1 such that
∫

log ‖Df−k0 | Ec
x‖

−1dν(x) > 0

The measure ν needs not be ergodic for fk0 but, since it is ergodic for f , it has a
finite number k of ergodic components νi (k divides k0). Moreover,

∫
log ‖Df−k0 | Ec

x‖
−1dνi(x) > 0
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for some ergodic component νi. Since, by Proposition 3.1, each ergodic component
νi is a Gibbs u-state, this completes the proof of the lemma. �

Let k0 ≥ 1 be fixed from now on and λ > 0 denote the expression on the left
hand side of (13). Let g = fk0 and

Γ = {x ∈ N : lim
n→∞

1

n

n∑

j=1

log ‖Dg−1 | Ec
gj(x)‖

−1 = λ}

be the set of regular points of log ‖Dg−1 | Ec‖ for the transformation g. By ergod-
icity, ν∗(Γ) = 1. A statement similar to the next corollary was proved by Ruelle,
Wilkinson [41] when the diffeomorphism is C1+ε and the center is 1-dimensional.

Corollary 3.9. There is n0 ≥ 1 such that #
(
Wc(w) ∩ Γ

)
< n0 for every w ∈ N .

Proof. Just use Proposition 3.6 with c = λ/2 and l = k0. Clearly, Γ ⊂ Γc,l. �

Let ℓ0 be any periodic center leaf intersecting supp ν∗ (periodic center leaves are
dense in the support, by Proposition 3.2) and κ ≥ 1 be minimal such that gκ(ℓ0) =
ℓ0. Since ν∗ is a Gibbs u-state and Γ has full measure, volu(Wu(x) \Γ) = 0 for ν∗-
almost every x, where volu denotes the Riemannian volume along strong unstable
manifolds. In particular, the stable set Ws(ℓ0) = ∪z∈ℓ0W

s(z) must intersect some
strong unstable disk Du such that volu(Du \ Γ) = 0. See Figure 1.

xy

Du

ℓ0 Ws(ℓ0)

Figure 1.

Lemma 3.10. Every point x ∈ Du ∩Ws(ℓ0) belongs to the strong stable manifold
of some periodic point y ∈ ℓ0 of f with period bounded by k0κn0.

Proof. Let y ∈ ℓ0 be such that x ∈ Ws(y) and let g0 = gκ | ℓ0. Suppose first that
the orbit of y under g0 is infinite. We refer the reader to Figure 2. Fix y∗ ∈ ω(y)
and let (yj)j be an injective sequence of iterates of y converging to y∗. Let (xj)j
be a sequence of iterates of x with xj ∈ Ws(yj) and d(xj , yj) → 0. Choose disks
Du

j around the xj inside the forward iterates of Du, small but with uniform size.

Since Γ is an invariant set, mu(Du
j \Γ) = 0 for every j. For every large j, the center

leaves Wc(xj) is close to ℓ0 and so one can define a cs-holonomy map πcs from Du
j

to the local strong unstable leaf through y∗. Since Wcs is absolutely continuous,
the image of every Du

j ∩ Γ is a full volume measure subset of a neighborhood of

y∗ inside Wu(y∗), where these neighborhoods also have uniform size for all large
j. Let J = {j0, j0 + 1, . . . , j0 + n0} where j0 is some large integer and n0 is as in
Corollary 3.9. On the one hand, it follows from the previous considerations that

Γ∗ =
⋂

j∈J

πcs(Du
j ∩ Γ)
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is a full volume measure subset of some neighborhood of y∗ inside Wu(y∗). Fix
some w ∈ Γ∗ close to y∗. For each j ∈ J , let wj ∈ Du

j ∩Γ be such that πcs(wj) = w.
Moreover, let zj be the point where the local strong stable manifold of wj intersects
Wcu(y∗) = Wcu(w). It is clear from the definition that wj ∈ Wcs(w) and so
zj ∈ Wc(w) for all j ∈ J . Moreover, by choosing w close enough to y∗ we can
ensure that wj is close to xj for every j ∈ J and so zj is close to yj for all j ∈ J .
The latter implies that the zj are all distinct. Observe also that zj ∈ Γ for all
j ∈ J , because Γ is (clearly) saturated by strong stable leaves. This proves that
#(Wc(w) ∩ Γ) ≥ #J > n0, in contradiction with Corollary 3.9. This contradiction
proves that the g0-orbit of y can not be infinite.

xj

yj

Du
j

Wcu

Wcs

w

zj

wj

y∗

Wu

Figure 2.

Similar arguments handle the case when y is a periodic point for g0. Let k ≥ 1
be the (minimal) period of y for g0. Forward iterates of Du accumulate on the
strong unstable manifolds of the iterates of y. Using, in much the same way as
before, that the center stable foliation is absolutely continuous and Γ is saturated
by strong stable leaves, we find w ∈ Wcu(y) arbitrarily close to y whose center leaf
Wc

w intersects Γ at points close to each of the k iterates of y. In view of Corollary 3.9
this implies that k < n0. This means that the period of y for f is less than k0κn0

as stated. The proof of Lemma 3.10 is complete. �

Lemma 3.11. Every point z ∈ ℓ0 is periodic for f , with period bounded by k0κn0.

Proof. Let y ∈ ℓ0 be a periodic point as in Lemma 3.10 and let z ∈ ℓ0 be arbitrary.
Choose y′ ∈ Wu(y) ∩Wc(Λi) \ ℓ0 and z′ ∈ Ws(z) ∩Wc(Λi) \ ℓ0. By accessibility,
there exists some su-path connecting y′ to z′ or, in other words, there exist points

b0 = y, a1 = y′, b1, . . . , ai, bi, . . . , as = z′, bs = z

which belong to Wc(Λi) such that aj and bj belong to the same strong stable
manifold and bj and aj+1 belong to the same strong unstable manifold. We are
going to find an (arbitrarily) nearby su-path

(14) b̃0 = y, ã1, b̃1, . . . , ai, bi, . . . , ãs, b̃s

with b̃s ∈ ℓ0 and such that every b̃i belongs to some periodic center leaf in Wc(Λi).
The first step is to observe that, since periodic leaves are dense, one may always find
periodic leaves ℓ1, . . . , ℓs−1 arbitrarily close to Wc(b1), . . . ,Wc(bs−1), respectively.

Let ℓs = ℓ0. Assume b̃0, ã1, . . . , b̃k have been defined, for some 0 ≤ k < s. Since
Wu(bk) intersects the stable set of Wc(bk+1) transversely at ak+1, and stable and

unstable sets vary continuously with the base point, we can find b̃k+1 ∈ ℓk+1 close
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to bk+1 such that Wu(b̃k) intersects Ws(b̃k+1) at some point ãk+1 close to ak.
Repeating this procedure s times, we obtain an su-path as in (14).

The next step is to prove that the points b̃i themselves are periodic. Recall
that b̃0 = y is taken to be periodic and Du intersects Ws(b̃0). So, the iterates

accumulate on Wu(b̃0) and, in particular, on ã1. This implies there exist points

w ∈ ℓ1 arbitrarily close to b̃1 whose strong stable manifold intersects fn(Du) for
some n. Since Γ has full volume inside every fn(Du), we may use Lemma 3.10

to conclude that w is periodic, with period uniformly bounded. Consequently, b̃1
itself is periodic. It also follows that the iterates of Du accumulate on Wu(b̃1).

This means we may now repeat the construction with b̃1 in the place of b̃0 and
conclude that b̃2 is periodic. After s steps we conclude that z̃ = b̃s is periodic.
Since z̃ is arbitrarily close to z, and all the periods are bounded, we get that z itself
is periodic. This completes the proof of the lemma. �

In particular, Lemma 3.11 implies that no periodic point on the support of ν∗
is hyperbolic. This is a contradiction since, by a classical result of Katok [29],
the support of any hyperbolic measure contains hyperbolic periodic points. This
completes the proof of Proposition 3.5. �

4. Mostly contracting center

In this section we prove some useful facts about partially hyperbolic diffeomor-
phisms with mostly contracting center direction. We call Wu-disk any image of a
ball in Eu embedded inside some strong unstable leaf.

Lemma 4.1. The center direction of f is mostly contracting if and only if the
center Lyapunov exponents of all ergodic Gibbs u-states are negative.

If f ∈ Pk
1 (N), k > 1 and Λ is an attractor of fc, then the center direction of

f | Wc(Λ) is mostly contracting if and only if the center Lyapunov exponent is
negative for every ergodic Gibbs u-state supported in Wc(Λ).

Proof. Bonatti, Viana [19] show that if the center direction is mostly contracting
then the center exponents of every ergodic Gibbs u-state are negative. To prove
the converse, let D be any disk inside a strong unstable leaf. By [17, Lemma 11.12]
every Cesaro accumulation point of the iterates of Lebesgue measure onD is a Gibbs
u-state. By [17, Lemma 11.13] every ergodic component of a Gibbs u-state is again
a Gibbs u-state. This implies that the iterates fn(D) accumulate on the support of
some ergodic Gibbs u-state ν. The hypothesis implies that ν-almost every point has
a Pesin (local) stable manifold which is an embedded disk of dimension dcs. Using
also the absolute continuity of the Pesin stable foliation (Pesin [35]), we conclude
that a positive Lebesgue measure subset of points in some fn(D) belong to the
union of these ds-disks. This implies that (5) holds on a positive Lebesgue measure
subset of D, as we wanted to show.

The second part of the lemma follows from similar arguments. �

4.1. Supports of Gibbs u-states.

Lemma 4.2. If the center direction of f is mostly contracting then the supports of
the ergodic Gibbs u-states of f are pairwise disjoint.

Proof. Letm1 andm2 be ergodic Gibbs u-states of f and suppose suppm1∩suppm2

contains some point z. Let D be any Wu-disk around z. Then D ⊂ suppm1 ∩
suppm2, since the supports are Wu-saturated (Proposition 3.1). By Lemmas 11.12
and 11.13 in [17], every ergodic component ν of every Cesaro accumulation point
of the iterates of Lebesgue measure on D is an ergodic Gibbs u-state. Clearly,
the support of ν is contained in suppm1 ∩ suppm2. By Pesin theory (see [19] for
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this particular setting) ν-almost every point has a local stable manifold which is
an embedded dcs-disk. Recall (Proposition 3.1) that the density of Gibbs u-states
along strong unstable leaves is positive and finite. Thus, we may find a Wu-disk
Dν ⊂ supp ν such that every point x in a full Lebesgue measure subset D∗

ν has a
Pesin stable manifold and belongs to the basin of ν. Moreover, Dν is accumulated
by Wu-disks Di ⊂ suppm1 such that Lebesgue almost every point is in the basin
of m1. Assuming Di is close enough to Dν , it must intersect the union of the
local stable manifolds through the points of D∗

ν on some positive Lebesgue measure
subset D∗

i (because the Pesin local stable lamination is absolutely continuous [35]).
Then D∗

i is contained in the basin of ν, and some full Lebesgue measure subset is
contained in the basin of m1. That implies m1 = ν. Analogously, m2 = ν, and so
the ergodic Gibbs u-states m1 and m2 coincide. That completes the proof of the
lemma. �

Remark 4.3. It follows from Proposition 3.1 and Lemma 4.2 that if f has mostly
contracting center direction and minimal strong unstable foliation then it has a
unique Gibbs u-state. This was first observed in [19].

Proposition 4.4. Suppose the center direction of f is mostly contracting, and let
m be an ergodic Gibbs u-state of f . Then the support of m has a finite number
of connected components. Moreover, each connected component S is Wu-saturated
and Wu(x) is dense in S for any x ∈ S.

Proof. Let p be any periodic point in the support of m with stable index equal
to dcs (such periodic points do exist, by Katok [29]) and let κ be its period. By
Proposition 3.1, the unstable manifold of every f j(p) is contained in suppm. We
claim that ∪κ

j=1W
u(f j(p)) is dense in suppm. To see this, let D be any disk

inside Wu(p). Consider the forward iterates of Lebesgue measure on D. Using
Lemmas 11.12 and Lemma 11.13 in [17], one gets that any ergodic component of any
Cesaro accumulation point of these iterates is an ergodic Gibbs u-state ν supported
inside the closure of ∪κ

j=1W
u(f j(p)). By Lemma 4.2, the Gibbs u-states m and ν

must coincide. In particular, suppm is contained in the closure of ∪κ
j=1W

u(f j(p)).
That proves our claim.

Since m is ergodic for f , its ergodic decomposition relative to fκ has the form

m = l−1
∑l

i=1 f
i
∗m̃ where l divides κ and m̃ is fκ-invariant and ergodic. Then

suppm =

l⋃

i=1

f i(supp m̃).

We claim that the f i(supp m̃), i = 1, . . . , l are precisely the connected components
of suppm. On the one hand, the previous paragraph gives that p ∈ f s(supp m̃) for
some s. Replacing either p or m̃ by an iterate, we may suppose s = 0. Then, by the
argument in the previous paragraph applied to fκ (it is clear from the definition (5)
that if f has mostly contracting then so does any positive iterate), supp m̃ coincides
with the closure of Wu(p) and, in particular, it is connected. On the other hand,
Lemma 4.2 gives that the f i(supp m̃), i = 1, . . . , l are pairwise disjoint. Since they
are closed, it follows that they are also open in suppm. This proves our claim.

We are left to prove that the strong unstable foliation is minimal in each con-
nected component Si = f i(supp m̃). This will follow from an argument of Bonatti,
Dı́az, Ures [16]:

Lemma 4.5. There is a neighborhood Us
i of f i(p) inside W s(f i(p)) such that every

unstable leaf in Si has some transverse intersection with Us
i .

Proof. For any x ∈ Si, let Dx be a small Wu-disk around x. Since m̃j is the unique
ergodic u-state of fκ with support contained in Sj . It is also the unique Cesaro
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accumulation point of the iterates of volDx
under fκ. In particular, there is nx ≥ 1

such that fnxκ(Dx) intersects the local stable manifold of f i(p) transversely. This
implies that Dx intersects the global stable manifold of f i(p) transversely. Then,
by continuity of the strong unstable foliation, there is a neighborhood Vx of x and a
bounded open set Ux ⊂ W s

fκ(f i(p)) such that Wu(y) intersects Ux transversely for

every y ∈ Vx. The family {Vx : x ∈ Si} is an open cover of the compact set Si. Let
{Vx1

, · · · , Vxm
} be a finite subcover. Choose Us

j a bounded neighborhood of f i(p)

inside W s
fκ(f i(p)) containing Uxj

for all j = 1, . . . ,m. It follows from the construc-
tion that every strong unstable leaf contained in Si intersects U

s
i transversely. This

finishes the proof of the lemma. �

Let us go back to proving Proposition 4.4. The lemma gives that Wu(f−nκ(x))
intersects Us

i transversely, and so Wu(x) intersects fnκ(Us
i ) transversely, for every

x ∈ Si and every n ≥ 0. Since fnκ(Us
i ) converges to f i(p) when n → ∞, it follows

that Wu(f i(p)) is contained in the closure of Wu(x). Hence, Wu(x) is dense in Sj ,
as claimed. The proof of the proposition is complete. �

4.2. Bernoulli property. An invariant ergodic measure η of a transformation g
is called Bernoulli if (g, η) is ergodically conjugate to a Bernoulli shift.

Theorem 4.6. Suppose f is a Ck, k > 1 partially hyperbolic diffeomorphism with
mostly contracting center direction. Then there is l ≥ 1 and a Ck neighborhood U
of f such that for any g ∈ U , every ergodic u-state of gl is Bernoulli.

Proof. Let m1, . . . ,mu be the ergodic Gibbs u-states of f . Proposition 4.4 gives
that for each j = 1, . . . , u there exists lj ≥ 1 such that the support of mj has lj
connected components Sj,i, i = 1, . . . , lj . Moreover, each connected component Sj,i

carries an ergodic component mj,i = f i
∗m̃j of the Gibbs u-state mj for the iterate

f lj . Let l be any common multiple of l1, . . . , lu. Then every Sj,i is fixed under f l.
Moreover, every Gibbs u-state mj,i is f

l-invariant and fnl-ergodic for every n ≥ 1:
otherwise Si would break into more than one connected component (cf. the proof
of Lemma 4.2). Then, by Ornstein, Weiss [33], every mi,j is a Bernoulli measure
for f l. We claim that {mj,i : 1 ≤ j ≤ u and 1 ≤ i ≤ lj} contains all the ergodic
u-states of fnl for every n ≥ 1. Indeed, let m∗ be any ergodic u-state for fnl. Then

m =
1

nl

nl∑

k=1

fk
∗m∗

is a u-state for f . Let m = a1m1+· · ·+aumu be its ergodic decomposition for f and
let s be such that as > 0. Then suppms ⊂ suppm. Since suppms is f -invariant,
it must intersect suppm∗. Using Lemma 4.2 for fnl we conclude that m∗ must
coincide with some ergodic component of ms for the iterate fnl. In other words, it
must coincide with ms,i for some i = 1, . . . , ls, and this proves our claim.

Now we extend these conclusions to any diffeomorphism g in a Ck, k > 1 neigh-
borhood of f . By Andersson [9], any such g has mostly contracting center direction,
and so the previous argument applies to it. However, we must also prove that the
integer l can be taken uniform on a whole neighborhood of f . Notice that the only
constraint on l was that it should be a multiple of the periods lj of the ergodic com-
ponents mj . Observe that [9] also gives that the number of ergodic Gibbs u-states
does not exceed the number of ergodic Gibbs u-states of f . So, we only need to
check that the periods lj remain uniformly bounded for any g in a neighborhood.
We do this by arguing with periodic points, as follows. Let us fix, once and for all,
f -periodic points pj with stable index dcs in the support of each mj , j = 1, . . . , u.
The period of each pj is a (fixed) multiple of lj . Let pj(g) be the continuation of
these periodic points for some nearby diffeomorphism g, and let {m1(g), . . . ,ms(g)},
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with s ≤ u be the ergodic Gibbs u-states of g. We claim that every suppmj(g),
1 ≤ j ≤ s contains some pi(g), 1 ≤ i ≤ u. This can be seen as follows. As observed
before, any accumulation point of Gibbs u-states of g when g → f is a Gibbs u-
state for f . We fix some small ε > 0 and consider the ε-neighborhoods B(pj , ε)
of the periodic points pj . Then, for any g close enough to f every ergodic Gibbs
u-state mj(g) must give positive weight to some B(pi, ε) and, consequently, also
to B(pi(g), 2ε). By continuous dependence of stable manifolds of periodic points
on the dynamics, and the fact that the supports of Gibbs u-states are u-saturated,
it follows that suppmj(g) contains some Wu-disk that intersects W s(pi(g)) trans-
versely. Then, the support of mj(g) must contain pi(g). This proves our claim. It
follows that the period lj(g) of each ergodic Gibbs u-state of g divides the period of
some pi(g) which, of course, coincides with the period of pi. Since the latter have
been fixed once and for all, this proves that the lj(g) are indeed uniformly bounded
on a neighborhood of f . The proof of the theorem is complete. �

4.3. Abundance of mostly contracting center. We also give a family of new
examples of diffeomorphisms with mostly contracting center.

Theorem 4.7. Suppose dimM = 3. The set of ergodic diffeomorphisms such that
either f or f−1 has mostly contracting center direction is C1 open and dense in
the space of Ck, k > 1 partially hyperbolic volume preserving diffeomorphisms with
1-dimensional center and some fixed compact center leaf.

Proof. Denote by Vk
m the set of Ck volume preserving partially hyperbolic diffeo-

morphisms with 1-dimensional center and some fixed compact center leaf. This is
a C1 open set, cf. [28, Theorem 4.1]. Moreover, the diffeomorphisms such that
both the strong stable foliation and the strong unstable foliation is minimal fill an
open and dense subset U1 of V1

m. This follows from a conservative version of the
results of [16]: one only has to observe that blenders, that they use for the proof
in the dissipative context, can be constructed also in the conservative setting, as
shown by [26]. By [15], there is an open and dense subset U2 for which the center
Lyapunov exponent ∫

log |Df | Ec(x)|dm(x) 6= 0.

Furthermore, by [24], there is an open and dense subset U3 of V1
m consisting of

accessible diffeomorphisms. Let U = U1 ∩ U2 ∩ U3. Before proceeding, let us recall
that C∞ are C1 dense in the space of volume preserving diffeomorphisms, by [11].
In particular, the C1 open and dense subset U has non-trivial intersection with the
space of Ck diffeomorphisms, for any k > 1.

We claim that for every Ck, k > 1 diffeomorphism f in U , either f or its
inverse has a unique ergodic Gibbs u-state and the corresponding center Lyapunov
exponent is negative. In particular, by Lemma 4.1, either f or its inverse has mostly
contracting center direction. The first step is to note that f is ergodic, since it is
accessible (see [22, 27, 38]). Then the Lebesgue measure vol is an ergodic Gibbs
u-state for both f and f−1. Since the strong stable and strong unstable foliations
are minimal, the Gibbs u-state is unique; see Remark 4.3. This completes the proof
of Theorem 4.7. �

5. Finiteness and stability of physical measures

In this section we prove Theorem D. As remarked before, Theorem A is a
particular case. We begin by recalling certain ideas from Bonatti, Gomez-Mont,
Viana [18] and Avila, Viana [13] that we use for handling the case when the center
Lyapunov exponent vanishes.
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5.1. Smooth cocycles. By assumption, the center leaves of f define a fiber bundle
πc : N → N/Wc over the leaf space. Then f may be seen as a smooth cocycle (as
defined in [13]) over fc:

f : N → N
↓ ↓

fc : N/Wc → N/Wc

It follows from the form of our maps that the strong stable manifold Ws(x) of
every point x ∈ M is a graph over the stable set W s

πc(x)
of πc(x) ∈ N/Wc. For

each η ∈ W s(ξ), the strong stable holonomy defines a homeomorphism hs
ξ,η : ξ → η

between the two center leaves. In fact (see [13, Proposition 4.1]),

(15) hs
ξ,η(θ) = lim

n→∞
(fn | η)−1 ◦ (fn | ξ)(θ),

(for large n one can identify fn(ξ) ≈ fn(η) via the fiber bundle structure) for each
θ ∈ ξ and the limit is uniform on the set of all (ξ, η, θ) with θ ∈ ξ and ξ and η in
the same local stable set. These s-holonomy maps satisfy

• hs
η,ζ ◦ h

s
ξ,η = hs

ξ,ζ and hs
ξ,ξ = id

• f ◦ hs
ξ,η = hs

fc(ξ),fc(η)
◦ f

• (ξ, η, θ) 7→ hs
ξ,η(θ) is continuous on the set of triples (ξ, η, θ) with ξ and η

in the same local stable set and θ ∈ Wc(ξ).

Let m be any f -invariant probability measure and µ = (πc)∗(m). A disinte-
gration of m into conditional probabilities along the center leaves is a measurable
family {mξ : ξ ∈ suppµ} of probability measures with mξ(ξ) = 1 for µ-almost every
ξ and

(16) m(E) =

∫
mξ(E) dµ(ξ)

for every measurable set E ⊂ M . By Rokhlin [40], such a family exists and is
essentially unique. A disintegration is called s-invariant if

(hs
ξ,η)∗mξ = mη for every ξ, η ∈ suppµ in the same stable set.

In a dual way one defines u-holonomy maps and u-invariance. We call a disintegra-
tion bi-invariant if it is both s-invariant and u-invariant, and we call it continuous
if mξ varies continuously with ξ on the support of µ, relative to the weak∗ topology.

Proposition 5.1. Let f ∈ Pk
∗ (N), k > 1 be such that the center stable foliation

is absolutely continuous. Let m be an ergodic Gibbs u-state with vanishing center
Lyapunov exponents. Then m admits a disintegration {mξ : ξ ∈ suppµ} into con-
ditional probabilities along the center leaves which is continuous and bi-invariant.

Proof. Proposition 3.3 gives that (πc)∗m has local product structure. Thus, we are
in a position to use Theorem D of Avila, Viana [13] to obtain the conclusion of the
present proposition. �

5.2. Zero Lyapunov exponent case. The following result provides a charac-
terization of the systems exhibiting ergodic Gibbs u-states with vanishing central
exponent.

Proposition 5.2. Let f ∈ Pk
1 (N), k > 1 be such that the center stable foliation

is absolutely continuous. Let Λ be an attractor of fc such that f is accessible on
Λ, and let m be an ergodic Gibbs u-state with vanishing center Lyapunov exponent.
Then

(1) the conditional probabilities {mx : x ∈ Λ} along the center leaves are equiva-
lent to the Lebesgue measure on the leaves, with densities uniformly bounded
from zero and infinity;
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(2) suppm = W c(Λ) and this is the unique Gibbs u-state supported in Wc(Λ);
(3) the basin of m covers a full Lebesgue measure subset of a neighborhood of

Wc(Λ).

Proof. By Proposition 5.1, there is a disintegration {mx : x ∈ Λ} of m along
the center foliation which is continuous, s-invariant, and u-invariant. Let ξ and
η be any two points in Wc(Λ). By accessibility on Λ, one can find an su-path
b0 = ξ, b1, . . . , bs−1, bs = η connecting ξ to η. This su-path induces a holonomy
map h : Wc(ξ) → Wc(η), defined as the composition of all strong stable/unstable
holonomy maps hi : Wc(bi−1) → Wc(bi). The fact that the disintegration is bi-
invariant gives, in particular, that

(17) mη(h(B
c
ε(ξ)) = mξ(B

c
ε(ξ))

It is a classical fact that the strong stable and strong unstable foliations are abso-
lutely continuous in a strong sense: their holonomy maps have bounded Jacobians.
See [20, 31, 1]. Those arguments extend directly to their restrictions to each center
stable or center unstable leaf, respectively: the restricted strong stable and strong
unstable foliations are also absolutely continuous with bounded Jacobians. By com-
pactness, the su-path may be chosen such that the number s of legs and the length
of each leg are uniformly bounded, independent of ξ and η 1. Then, we may fix
a uniform upper bound constant K > 1 on the Jacobians of all associated strong
stable and strong unstable holonomies. Notice volc(Br(ζ)) = 2r, since the center
leaves are one-dimensional. Then

(18) K−1 volc(Bc
ε(ξ)) ≤ volc(h(Bc

ε(ξ))) ≤ K volc(Bc
ε(ξ)).

From (17) and (18) we obtain

1

K

mξ(B
c
ε(ξ))

volc(Bc
ε(ξ))

≤
mη(h(B

c
ε(ξ)))

volc(h(Bc
ε(ξ)))

≤ K
mξ(B

c
ε(ξ))

volc(Bc
ε(ξ))

.

and, taking the limit as ε → 0,

1

K

dmξ

d volc
(ξ) ≤

dmη

d volc
(η) ≤ K

dmξ

d volc
(ξ).

Since we can always find η where the density is less or equal than 1 (respectively,
greater or equal than 1), this implies that

(19)
dmξ

d volc
(ξ) ∈

[
K−1,K]

for every ξ, and that proves claim (1).
Now let m′ be any other ergodic Gibbs u-state supported in Wc(Λ). The center

Lyapunov exponent of m′ must vanish: otherwise, by [29], there would be some
hyperbolic periodic point in Wc(Λ), and that is incompatible with the conclusion
in part (1) that there exist invariant conditional probabilities equivalent to Lebesgue
measure along the center leaves. So, all the previous considerations apply to m′ as
well. In particular, it has a continuous disintegration {m′

x : x ∈ Λ} along the center
foliation such that each m′

x is equivalent with volc. Moreover, by Proposition 3.2,
(πc)∗(m) = (πc)∗(m

′). Then, volc-almost every point in almost every center leaf,
relative to (πc)∗(m) = (πc)∗(m

′), belongs to the basin of both m and m′. In

1This may be deduced from [12] as follows. By Proposition 8.3 in [12], given any x0 ∈ M there
exists w ∈ M such that x0 is connected to every point in a neighborhood of w by a uniformly
bounded su-path. Then the same is true if one replaces w by an arbitrary point z ∈ M : connect
w to z by some su-path; the ”same” su-path determines a bijection between neighborhoods of
w and z; concatenating with su-paths from x0 to the neighborhood of w one obtains uniformly
bounded su-paths from x0 to any point near z. The claim now follows by compactness of the
ambient manifold.
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particular, the two basins intersect, and that implies m = m′. That completes the
proof of claim (2).

From conclusion (1) we get that there exists a full m-measure set ∆ consisting
of leaves such that volc-almost every point in the leaf belongs to the basin of m.
Then, since m is a Gibbs u-state, we can find a Wu-disk Du

0 such that ∆∩Du
0 has

full measure in Du
0 . Consider the cu-disk

Dcu
0 =

⋃

ξ∈Du
0

Wc(ξ)

Observe that the center foliation Wc is absolutely continuous on each center unsta-
ble leaf, because the corresponding holonomy maps between unstable leaves coincide
with the corresponding holonomy maps for the center stable foliation, which we as-
sume to be absolutely continuous. Using this fact, and a Fubini argument, we get
that Lebesgue almost every point in Dcu

0 belongs to the basin of m. Next, consider
the open set

D0 =
⋃

ζ∈Dcu
0

Ws
loc(ζ).

Since the strong stable foliation is absolutely continuous and the basin is Ws-
saturated, it follows that Lebesgue almost every point in D0 belongs to the basin
of m. It is clear that we can cover Wc(Λ) by finitely many such open sets D0. This
proves (3), and so the proof of the lemma is complete. �

5.3. Construction of physical measures. We are nearly done with the proof
of Theorem D. By Proposition 3.5, all ergodic Gibbs u-states have non-negative
center Lyapunov exponent. The case when the exponent vanishes for some Gibbs
u-state is handled by Proposition 5.2: we get alternative (a) of the theorem in this
case. Finally, if the center Lyapunov exponent is negative for all Gibbs u-states
over some attractor Λi of fc then, by Lemma 4.1, the center direction of f is mostly
contracting on that attractor Λi. Then, by Bonatti, Viana [19], there are finitely
many ergodic Gibbs u-states supported in Wc(Λi), these u-states are the physical
measures of f , and the union of their basins covers a full volume measure subset
of a neighborhood of Wc(Λi). By Theorem 4.6, all these physical measures are
Bernoulli for some iterate of f . Thus, we get alternative (b) of the theorem in this
case.

From now on, let {mi,j}
J(i)
j=1 be the physical measures supported on each attrac-

tor Λi. As we have just seen, their basins cover a full Lebesgue measure subset
of a neighborhood Ui of Wc(Λi). We want to prove that the union of all these
basins contains a full Lebesgue measure subset of the ambient manifold. Suppose
otherwise, that is, suppose the complement C of this union has positive Lebesgue
measure. Let C0 ⊂ C be the set of Lebesgue density points of C. Notice that C0 is
f -invariant and vol(C0) = vol(C). Since the unstable foliation is absolutely contin-
uous, there is a Wu-disk Du such that volDu(Du ∩C0) > 0. Denote Iu = Du ∩C0.
Then every Cesaro accumulation point of the iterates of Lebesgue measure on Iu

is a Gibbs u-state (see [17], section 11.2), and so its ergodic components are er-
godic Gibbs u-states. Let m∗ be any such accumulation point and mi,j be an
ergodic component of m∗. The support of mi,j is contained in Ui, and so there is
n0 ≥ 1 such that fn0(Iu) intersects Ui. Recalling that C0 is invariant, we get that
vol(C0∩Ui) > 0. This contradicts the definition of C0, since Lebesgue almost every
point in Ui belongs to the basin of mi,l for some l = 1, . . . , J(i). This contradiction
proves that the union of the basins does have full Lebesgue measure in N . That
completes the proof of Theorem D.
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5.4. Number of physical measures. In this section, we give explicit upper
bounds on the number of physical measures for some diffeomorphisms with mostly
contracting center direction:

Theorem 5.3. Let f ∈ Pk
1 (N), k > 1 be accessible on some attractor Λ and have

absolutely continuous center stable foliation. Assume there exists some center leaf
ℓ ⊂ Wc(Λ) such that fκ(ℓ) = ℓ for some κ ≥ 1 and fκ | ℓ is Morse-Smale with
periodic points p1, · · · , ps.

Then the center direction is mostly contracting over Λ and f has at most s
physical measures supported in Wc(Λ). If Wu(pi) intersects W s(ℓ) \ ∪s

j=1W
s(pj)

for every i then f has at most s/2 physical measures supported in Wc(Λ).

Proof. Since f has hyperbolic periodic point in Wc(Λ) the restriction of f to Wc(Λ)
can not be conjugate to a rotation extension over Λ. Thus, by Theorem D, f has
mostly contracting center direction over Λ.

Lemma 5.4. Suppose f ∈ Pk
1 (N), k > 1 has mostly contracting center direction

on an attractor Λ and let p be any periodic point in Wc(Λ). Then any disk Du in
unstable manifold of p contains a positive measure subset Iu such that any ξ ∈ Iu

belongs to the basin of some physical measure and has local stable manifold W s
loc(ξ).

Proof. As in the proof of Lemma 4.1, there is a positive measure subset Iu of Du

belonging to the basin of some physical measure m, and for ξ ∈ Iu, there is n0

such that fn0(ξ) belongs to the Pesin stable manifold of some point ζ. Iterating
backward we obtain a local stable manifold for ξ. �

Suppose f has physical measures {mj}Jj=1 on Wc(Λ). Let pt, t = 1, . . . , s be
fixed as in Theorem 5.3. Since the support of each physical measure is a u-saturated
compact set, the following fact is an immediate consequence of Lemma 4.2:

Corollary 5.5. For each 1 ≤ t ≤ s there is at most one physical measure whose
support intersects W s(pt).

As observed before, the unstable foliation is minimal in every attractor in the
quotient. So, the orbit of every strong unstable leaf intersectsW s(ℓ) = ∪s

t=1W
s(pt).

Since the supports of physical measures are Wu-saturated and invariant, it follows
that for every 1 ≤ j ≤ J there exists some 1 ≤ t ≤ s such that suppmj intersects
W s(pt). So, by Corollary 5.5, J ≤ s.

Let {psi}
s/2
i=1 be periodic points in ℓ with stable index ds (i.e. repellers for f | ℓ)

and let {psi}
s
i=s/2+1 be periodic points in ℓ with stable index dcs (i.e. attractors for

f | ℓ). We claim that if Wu(pi) intersects W
s(ℓ) \∪s

j=1W
s(pj) for every i, then the

support of every physical measure contains some pi, s/2+1 ≤ i ≤ s. Indeed, by the
previous observations the support must intersect W s(pi) for some i, corresponding
to either an attractor or a repeller of f | ℓ. In the former case, the claim is proved;
in the latter case, our assumption on ℓ implies that the support intersects the stable
set of some other periodic point pj which is an attractor, and so the claim follows in
just the same way. So, by the previous argument, the number of physical measures
can not exceed s/2 in this case. The proof of Theorem 5.3 is complete. �

5.5. Statistical stability. We also want to analyze the dependence of the physical
measures on the dynamics. For this, we assume N = M ×S1 and restrict ourselves
to the set Sk(N) ⊂ Pk

1 (N) of skew-product maps. Notice that every f ∈ Sk(N) is
dynamically coherent, has compact one-dimensional center leaves, and absolutely
continuous center stable foliation. As pointed out before, partially hyperbolicity is
an open property and accessibility holds on an open and dense subset of Sk(N).
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Theorem 5.6. For any k > 1 there exists a C1 open and Ck dense subset Bk(N)
of Sk(N) such that every f ∈ Bk(N) has mostly contracting center direction. More-
over, on a Ck open and dense subset of Bk(N) the number of physical measures is
locally constant and the physical measures depend continuously on the diffeomor-
phisms.

Proof. Notice that every f ∈ Sk(N) is dynamically coherent, has compact one-
dimensional center leaves, and absolutely continuous center stable foliation. By a
variation of an argument of Niţică, Török [32], one gets that the set of diffeomor-
phisms in Sk(N) which are accessible on all attractors are C1 open and Cr dense.
Let us comment a bit on this, since our setting is not exactly the same. The heart
of the proof is to show that the accessibility class of any point contains the corre-
sponding center leaf. This is done by considering 4-leg su-paths linking the point
to every nearby point in the center leaf; in this way one gets that every accessibility
class is open in the center leaf; then, connectivity gives the conclusion. The only
difference in our case is that we deal with accessibility over each of the attractors,
not the whole ambient manifold. However, the arguments remains unchanged, just
with the additional caution to choose the corners of the 4-leg su-path to be points
over the attractor. It is easy to see that the set of diffeomorphisms in Sk(N) which
have a center leaf containing some hyperbolic periodic point is C1 open and Cr

dense. Take Bk be the intersection of above two sets. Then by Theorem D, any
f ∈ Bk has mostly contracting center bundle. By Andersson [9], for any partially
hyperbolic diffeomorphism f with mostly contracting center direction there is a
Ck, k > 1 neighborhood U of f such that any g ∈ U has mostly contracting center
direction also, and on a Ck open and dense subset of U , the number of physical
measures is locally constant and the physical measures depend continuously on the
diffeomorphism. This ends the proof of Theorem 5.6. �

6. Absolute continuity for mostly contracting center

Throughout this section f : N → N is a partially hyperbolic, dynamically coher-
ent, Ck, k > 1 diffeomorphism with mostly contracting center direction. Recall the
later is a robust (open) condition, by Andersson [9]. We develop certain criteria
for proving absolute continuity of the center stable, center unstable, and center
foliations and we apply these tools to exhibit several robust examples of absolute
continuity. In particular, this yields a proof of Theorem E.

The starting point for our criteria is the observation that for maps with mostly
contracting center the Pesin stable manifolds are contained in, and have the same
dimension as the center stable leaves. Since the Pesin stable lamination is absolutely
continuous ([35, 37]), in this way one can get a local property of absolute continuity
for the center stable foliation. This initial step of the construction is carried out in
Section 6.2. Then one would like to propagate this behavior to the whole ambient
manifold, in order to obtain actual absolute continuity. It is important to point out
that this can not possibly work without additional conditions. Example 6.1 below
illustrates some issues one encounters. A more detailed analysis, including explicit
robust counter-examples will appear in [49]. Suitable assumptions are introduced in
Section 6.1, where we also give the precise statements of our criteria. In Section 6.3
we present the main tool for propagating local to global behavior. The criteria are
proved in Sections 6.4 through 6.6.

Before proceeding, let us give a simple example of a map whose center foliation
is leafwise absolutely continuous and locally absolutely continuous, but not globally
absolutely continuous. This kind of construction explains why Pesin theory alone
can not give (global) absolute continuity of center foliations, even when the center
direction is mostly contracting.
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Example 6.1. Let us start with f0 : S1 × [0, 1] → S1 × [0, 1], f0(x, t) = (2x, g(t))
where g : [0, 1] → [0, 1] is a C2 diffeomorphism such that g(0) = 0, g(1) = 1,
g(t) < t for all t ∈ (0, 1), and 0 < g′(t) < 2 for every t ∈ [0, 1]. Then f0 is a
partially hyperbolic endomorphism of the cylinder, with the vertical segments as
center leaves. Next, let f : S1 × [0, 1] → S1 × [0, 1] be a C2-small perturbation,
preserving the two boundary circles Ci = S1 × {i}, i = 0, 1 and the vertical line
{0}× [0, 1] through the fixed point (0, 0). Moreover, the horizontal derivatives of f
at the endpoints of this vertical line should be different:

(20)
∂f

∂x
(0, 0) 6=

∂f

∂x
(0, 1).

By the stability of center foliations ([28], the new map f has a center foliation
whose leaves are curve segments with endpoints in the two boundary circles. Thus,
they induce a holonomy map h : C0 → C1 that conjugates the two expanding maps
f | C0 and f | C1. Condition (20) implies that the conjugacy can not be absolutely
continuous (see [43]). This shows that the center foliation is not absolutely con-
tinuous. Yet, it is absolutely continuous restricted to S1 × [0, 1), as we are going
to explain. Notice that our assumptions imply that g′(0) < 1 < g′(1) and so the
lower boundary component C0 is an attractor for f0, with S1 × [0, 1) as its basin of
attraction. Then the same is true for the perturbation f . Moreover, restricted to
this basin, the center leaves coincide with the Pesin stable manifolds of the points in
the attractor, and so they do form an absolutely continuous foliation. In particular,
this also shows that the center foliation is leafwise absolutely continuous.

6.1. Criteria for absolute continuity. We assume that some small cone field
around the strong unstable bundle has been fixed. We call u-disk any embedded
disk of dimension du whose tangent space is contained in that unstable cone field
at every point. Previously, we introduced the special case of Wu-disks, which are
contained in strong unstable leaves. To begin with, in Section 6.4 we prove that
upper leafwise absolute continuity always holds in the present context:

Proposition 6.2. The center stable foliation of f is upper leafwise absolutely con-
tinuous, if it exists.

For the next criterion we assume the diffeomorphism is non-expanding along the
center direction. This notion is defined as follows. Assume also f is dynamically
coherent. Given r > 0 and ∗ ∈ {s, cs, c, cu, u}, we denote by W∗

r (x) ⊂ W∗(x) the
ball of radius r around x, relative to the distance induced by the Riemannian metric
of N on the leaf W∗(x). In what follows we always suppose r is small enough so
that W∗

r (x) is an embedded disk of dimension d∗ for all x ∈ M and every choice of

∗. We use Ŵ s(p) and Ŵu(p) to denote the stable and unstable sets of a periodic
point p. We say that f is non-expanding along the center direction if there exist
ρ > 0 and ε > 0 such that

• fn(Wcs
ε (x)) ⊂ Wcs

ρ (fn(x)) for every n ≥ 0 and almost any x in any u-disk.
• the support of every ergodic Gibbs u-state m contains some periodic point

p such that Ŵ s(p) ⊃ Wcs
2ρ(p)

Proposition 6.3. If f is non-expanding along the center direction then the center
stable foliation is absolutely continuous.

The proof of this proposition is given in Sections 6.2 through 6.5. We will
see that the hypothesis holds for a classical construction of partially hyperbolic,
robustly transitive diffeomorphisms due to Mañé [30] (Section 7.1). It also holds
for a more recent class of examples introduced by Bonatti, Viana [19], which are not
even partially hyperbolic (though they do admit a dominated invariant splitting of
the tangent bundle), but this fact will not be proved here.
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Let f ∈ Pk
1 (N). Let ℓ be a periodic center leaf ℓ, with period κ ≥ 1. For

∗ ∈ {s, u}, we denote W∗(ℓ) = ∪ζ∈ℓW∗(ζ). We call homoclinic leaf associated to ℓ
any center leaf ℓ′ contained in Ws(ℓ) ∩Wu(ℓ). Then there exist strong stable and
strong unstable holonomy maps

(21) hs : ℓ → ℓ′ and hu : ℓ → ℓ′

We say that ℓ is in general position if

(a) fκ | ℓ is Morse-Smale with a single periodic attractor a and a single periodic
repeller r;

(b) hs(a ∪ r) is disjoint from hu(a ∪ r), for some homoclinic leaf associated to
the center leaf ℓ.

Notice that Ws(ℓ′) \ Ws(hs(r)) is contained in the stable manifold Ŵ s(a) of the

attractor. Thus, condition (b) implies that Wu(a) and Wu(r) intersect Ŵ s(a)

transversely. Analogously, Ws(a) and Ws(r) intersect Ŵu(r) transversely.

Proposition 6.4. Suppose f ∈ Pk
1 (N) has some center leaf ℓ in general position

and such that every strong unstable leaf intersects Ws(ℓ). Then the center stable
foliation of f is absolutely continuous.

This proposition is proved in Section 6.6. In Section 7.2 we use it to prove
Theorems B and E, and in Section 7.3 we give an application to volume preserving
systems. Noticing that, apart from dynamical coherence, all the hypotheses of
Proposition 6.4 are robust, we get the following immediate consequence:

Corollary 6.5. Suppose f ∈ Pk
1 (N) is robustly dynamically coherent and has some

periodic center leaf ℓ in general position and such that every strong unstable leaf
intersects Ws(ℓ). Then the center stable foliation is robustly absolutely continuous.

6.2. Local absolute continuity. The following lemma will allow us to obtain
some property of local absolute continuity:

Lemma 6.6. For any ergodic u-state m of f and any disk D contained in an unsta-
ble leaf inside suppm, there is a positive measure subset Γ such that the points in Γ
have (Pesin) stable manifolds with uniform size. Moreover, these stable manifolds
form an absolutely continuous lamination, in the following sense: there is K > 0
such that for any two u-disks D1, D2 sufficiently close to D, the stable manifolds
of points in Γ define a holonomy map between subsets of D1 and D2, and this is
absolutely continuous, with Jacobian between 1/K and K.

Proof. Because f has mostly contracting center direction, m is a hyperbolic ergodic
measure of f , by Pesin theory, there is a Pesin block Λ with positive m measure
such that every point x ∈ Λ has uniform size of stable manifold, and these stable
manifolds on Λ is uniformly absolutely continuous. Notice that the stable manifolds
are contained in the center stable leaves. Since m is a u-state, there is a disk
D0 contained in an unstable leaf inside the support and intersecting Λ on a mu-
positive measure subset D∗

0 . Then the points in D∗
0 have stable manifolds of size

bounded below by some δ0 > 0. Denote B0 = ∪x∈D∗

0
W s

δ0
(x). Since m is a u-state,

m(B0) = a0 > 0. We claim that there is n0 > 0 such that (fn0)∗ volD(B0) 6= 0.
Let us prove this claim. Let D∗

ε be the ε-neighborhood of D∗
0 inside the cor-

responding unstable leaf. Denote by Bε = ∪x∈D∗

ε
W cs

δ0
(x), it is an open set, and

m(Bε) ≥ a0 > 0. Because every Cesaro accumulation point of the iterates of
Lebesgue measure on D is a Gibbs u-state with support contained in suppm, and
there is a unique ergodic u-state with support contained in suppm, then m is the
unique Cesaro accumulation of the iterates of Lebesgue measure on D. Since Bε is

open, one has limn→∞
1
n

∑n−1
i=0 (f

i)∗ volD(Bε) ≥ m(Bε) = a0, so there is arbitrar-
ily big n such that fn

∗ (volD)(Bε) > a0/2. For δ > 0 sufficiently small, denote by
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Dδ = {x ∈ D, du(x, ∂(D)) ≥ δ}, one has mu(D \Dδ) < a0/4. Then there is y ∈ Dδ

such that fn(y) ∈ Bε and fn(D) contains a disk Dy around y and for any x ∈ D∗
ε

one has W cs
δ0
(x) ∩ Dy 6= ∅. Then the stable manifolds of D∗

0 define a holonomy
map between D∗

0 and B0 ∩Dy, by the uniform absolute continuity of these stable
manifolds, volDy

(Dy ∩B0) > 0, then fn0

∗ (volD)(B0) > 0. This proves the claim.
This claim implies volfn(D)(f

n(D) ∩ B∗
0) > 0, let Γ = D ∩ f−n0(B∗

0 ), then
volD(Γ) > 0, every point in Γ has uniform size of stable manifold, and these stable
manifolds are uniformly absolutely continuous. �

Suppose f ∈ Diffk(N), k > 1 admits dominated splitting Ecu ⊕ Ecs, and it is
dynamically coherent, that is, it has center stable and center unstable foliation. We
call cs-block for f the image B = h(Σ× Idcs) of any embedding h : Σ× Idcs → N ,
with Σ ⊂ Idcu , satisfying the following properties:

(1) h({a} × Idcs) is contained in Wcs(h(a, 0)), for every a ∈ Σ
(2) h({a} × Idcs) is contained in the stable set of h(a, 0), for every a ∈ Σ
(3) h(Σ× {0}) is a positive measure subset of some disk D transverse to Wcs;
(4) there is K > 0 such that for any u-disks D1, D2 ⊂ N which cross h(Σ×Iu),

that is, Di intersects h(a × Ics) for every a ∈ Σ, there is a holonomy map
hcs induced by Wcs from D1∩h(a×Ics) to D2∩h(a×Ics), the Jacobian of
the holonomy map between volD1

and volD2
is bounded by K from above

and 1/K from below.

We also say that B is a cs-block over the disk D in (3). If D is contained in the
unstable manifold of an index dcs periodic point p, then we say the cs-block is
associated with p.

Remark 6.7. If D is in the support of some ergodic Gibbs u-state m then m(B) > 0:
this is a consequence of the absolute continuity property (4) and the fact that Gibbs
u-states have positive densities along strong unstable leaves (Proposition 3.1).

We say that the cs-block has size r > 0 if the plaque h({a} × Idcs) contains

Wcs
r (h(a, 0)) for every a ∈ Σ. If a map h̃ : Σ× Idcs → N satisfies

h̃ | Σ× {0} ≡ h | Σ× {0} and h̃(a× Idcs) ⊂ h(a× Idcs)

for every a ∈ Σ then B̃ = h̃(Σ× Idcs) is called a sub-block of B.

Lemma 6.8. Let m be an ergodic u-state of f and p ∈ suppm be a periodic point

of stable index dcs whose stable manifold Ŵ s(p) has size r. Then there is a cs-block
associated with p with size r.

Proof. By Lemma 6.6, there is a cs-block over any u-disk D ⊂ Wu(p). Let κ be
the period of p. For every large n, the backward image f−nκ(B) is a cs-block of
size r over the u-disk f−n(D). �

6.3. Recurrence to cs-blocks. The next proposition is a key ingredient in the
proof of our criteria for absolute continuity.

Proposition 6.9. Let mi, i = 1, . . . , s be the ergodic Gibbs u-states of f and
Bi, i = 1, . . . , n be cs-blocks over Wu-disks Di ⊂ suppmi. Then for any positive
Lebesgue measure subset D∗ of any Wu-disk D, there exists n > 0 arbitrarily large
and there exists 1 ≤ i ≤ s such that volD(D∗ ∩ f−n(Bi)) > 0.

Proof. (For notational simplicity, we use mu to denote volfn(Γ) for any u-disk Γ
and any n > 0.) Let D∗

ε = ∪x∈D∗Bε(x,D) where Bε(x,D) is the ball in D with
radius ε and center in x, and m, mε be Cesaro accumulation points of the iterates of
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Lebesgue measure on D∗ and D∗
ε respectively, such that there is {nj}∞j=1 satisfying

lim
j→∞

1

njmu(D∗)

nj−1∑

i=0

(f i)∗m
u | D∗ = m;

lim
j→∞

1

njmu(D∗
ε)

nj−1∑

i=0

(f i)∗m
u | D∗

ε = mε.

Then they are u-states, denote bym = a1m1+· · ·+amms the ergodic decomposition
of m, suppose a1 6= 0. For ε sufficiently small, mu(D∗

ε) ≈ mu(D∗), and then
mε ≈ m, denote by mε = a1,εm1 + · · ·+ as,εmm the ergodic decomposition of mε,
one has a1,ε ≈ a1. Denote D∗

1 = D1 ∩B1 and D∗
1,δ = ∪x∈D∗

1
Bu

δ (x) and

B∗
1,δ = {z : z ∈ Wcs

loc(x) ∩Wu
loc(y) for x ∈ D∗

1,δ and y ∈ B1}.

Then there is K1 > 0 such that for any u-disk Γ which crosses B∗
1,δ, one has

mu(Γ ∩B1)

mu(Γ ∩B∗
1,δ)

> K1,

that is because mu(Γ ∩ B1) > 1
Kmu(D1 ∩ B1) > 0 and mu(Γ ∩ B∗

1,δ) is bounded
above, where K is the bound for the Jacobian of the center stable foliation in
B1. We can choose ε properly such that mu(∂(D∗

ε)) = 0, by Remark 6.7, suppose
m1(B1) = b0 > 0. Because B∗

1,δ is open,

lim
j→∞

1

njmu(D∗
ε )

nj−1∑

i=0

(
f i
∗m

u | D
)(
f i(D∗

ε) ∩B∗
1,δ

)
≥ mε(B1,δ) & b0aε >

a1b0
2

.

So there is nj arbitrarily big such that

(
f
nj

∗ mu | D
)(
fnj(D∗

ε ) ∩B∗
1,δ

)
≥

a1b0
4

mu(D∗
ε).

We claim that there is b1 > 0 such that, for every ε > 0 sufficiently small,
(
f
nj

∗ mu | D
)(
fnj (D∗

ε ) ∩B1

)
≥ 2b1m

u(D∗
ε).

Let us prove the claim. For ε1 < ε, denote D∗
ε,ε1 = {x ∈ D∗

ε ; dD(x, ∂(D∗
ε )) > ε1}.

Then, for ε1 sufficiently small, one has mu(D∗
ε,ε1) > mu(D∗

ε ) − a1b0/8. It follows
that

(
f
nj

∗ mu | D
)(
B∗

1,δ

)
≥

a1b0
8

mu(D∗
ε )

and for any x ∈ fnj(D∗
ε,ε1) ∩ B∗

1,δ, there is a u-disk Dx ⊂ fnj(D∗
ε ) containing x

such that Dx ∩Wcs
loc(y) 6= ∅ for any y ∈ D∗

1,δ. Since

mu(Dx ∩B1)

mu(Dx ∩B∗
1,δ)

> K1,

and the distortion property on Wu, there is K2 > 0 such that

mu(f−nj (Dx ∩B1))

mu(f−nj (Dx ∩B∗
1,δ))

> K2.

Then, taking b1 = K2a1b0/16, we get our claim:

mu(D∗
ε ∩ f−nj (B1)) > K2m

u(D∗
ε,ε1 ∩ f−nj(B∗

1,δ)) > 2b1m
u(D∗

ε),

Since limε→0 m
u(D∗

ε \D∗) = 0, this proves that mu(D∗ ∩ f−nj(B1)) > b1m
u(D∗).

This completes the proof of the proposition. �
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Remark 6.10. Assuming there exists a unique Gibbs u-state, the arguments in the
proof of Proposition 6.9 yield a slightly stronger conclusion that will be useful in
the sequel: there exists b1 > 0 such that for any positive Lebesgue measure subset
D∗ of any Wu-disk D and for any 1 ≤ i ≤ s there exist arbitrarily large values of
n > 0 such that volD(D∗ ∩ f−n(Bi)) ≥ b1 volD(D∗).

6.4. Upper leafwise absolute continuity. Here we prove Proposition 6.2. Sup-
pose there exists some measurable set Y with vol(Y ) > 0 that meets almost every
center stable leaf Wcs(z) on a zero volcs-measure subset. Up to replacing Y by
some full measure subset, we may suppose that every x ∈ fn(Y ) is a Lebesgue
density point of fn(Y ) for every n ≥ 0:

(22) lim
ρ→0

vol(Bρ(x) ∩ fn(Y ))

vol(Bρ(x))
= 1.

Since f has finitely many ergodic u-states and their basins cover a full measure
subset of N (see [19]), it is no restriction to suppose that Y is contained in the
basin of some ergodic Gibbs u-state m. Let B be a cs-block over some u-disk
contained in the support of m (recall Proposition 3.1 and Section 6.2). Since the
strong unstable foliation is absolutely continuous (see [20]), we can find a u-disk D
such that D∗ = D ∩ Y has positive volD-measure. By Proposition 6.9, there exists
n > 0 such that volfn(D)(f

n(D∗) ∩ B) > 0. Take y ∈ D∗ such that fn(y) ∈ B and
fn(y) is a Lebesgue density point for fn(D∗) ∩ B inside fn(D). Then, for every
small ρ > 0,

volfn(D)

(
Bu

ρ (f
n(y)) ∩ B

)

volfn(D)

(
Bu

ρ (f
n(y)

) ≥
volfn(D)

(
Bu

ρ (f
n(y)) ∩ fn(D∗) ∩ B

)

volfn(D)

(
Bu

ρ (f
n(y)

) ≈ 1,

where Bu
ρ (x) denotes the connected component of Bρ(x) ∩Wu(x) that contains x.

Then, since the center stable foliation is uniformly absolutely continuous on the
cs-block, there exists c > 0 such that

vol
(
Bρ(f

n(y)) ∩ B
)

vol
(
Bρ(fn(y)

) ≥ c for all small ρ > 0.

Together with (22), this implies that vol(fn(Y ) ∩ B) > 0. On the other hand, the
hypothesis implies that fn(Y ) intersects almost every center stable leaf on a zero
Lebesgue measure subset. Using, once more, that the center stable leaf is absolutely
continuous on the cs-block, we get that vol(fn(Y ) ∩ B) = 0. This contradicts the
previous conclusion, and that contradiction completes the proof of Proposition 6.2.

6.5. Non-expansion along the center. Now we prove Proposition 6.3. Let the
ergodic u-states {mi}mi=1, periodic points {pi}

m
i=1, and ρ, ε given in the definition of

non-expansion along the center. By Lemma 6.8, we can choose cs-blocks {Bi}mi=1

associated with mi with size ρ.
In order to prove the center stable foliation is absolutely continuous, we just

need show that for any two u-disks D1, D2 which are ε near, the holonomy map
induced by Wcs between D1 and D2 maps Lebesgue positive measure subset to a
Lebesgue positive measure subset, where two u-disks D1, D2 are ε near if for any
x ∈ D1, there is y ∈ D2 belonging to Wcs

ε (x).
Suppose D∗

1 ⊂ D1 is a positive measure subset, denote by D∗
2 ⊂ D2 the image

of D∗
1 under cs-holonomy map. Since f is non-expanding along the center, we

can assume that for any x ∈ D∗
1 , one has fn(Wcs

ε (x)) ⊂ Wcs
ρ (fn(x)) for n > 0.

Choose B̃i a sub-block of Bi with arbitrarily small size, then by Proposition 6.9,
there is n and j such that mu(fn(D∗

1) ∩ B̃j) > 0. Because fn(D∗
1) and fn(D∗

2)
are ρ near, and the cs-holonomy map in Bi is absolutely continuous, one has that
mu(fn(D∗

2) ∩Bj) > 0, this implies mu(D∗
2) > 0, so Wcs is absolutely continuous.
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6.6. Center leaves in general position. We are going to prove Proposition 6.4.
Let us start by giving an overview of the argument. We need to compare a set on
any u-disk with its projection to another u-disk under cs-holonomy. The idea is
to consider appropriate iterates of both u-disks intersecting a given cs-block, and
then take advantage of the uniform structure on the cs-block. The problem is that,
because cs-blocks have gaps along the center direction, one can not immediately
ensure that iterates of both disks intersect the same cs-block. To this end, we use
the twisting property in the assumption of general position to find a pair of cs-
blocks whose union covers the whole center direction, in the sense that it intersects
any large iterate of any u-disk. Then, we show that some iterate of any of the disks
intersects both cs-blocks, which gives the required property.

Now we fill in the details in the proof. Let f and ℓ be as in the statement of the
proposition. For simplicity, consider the center leaf ℓ to be fixed (in other words,
κ = 1) and we also take the attractor a and repeller r of f | ℓ to be fixed. Extension
to the general case is straightforward.

Lemma 6.11. The diffeomorphism f has a unique ergodic u-state and its support
contains the attractor a.

Proof. By Lemma 4.2, the supports of all ergodic Gibbs u-states are pairwise dis-
joint. Thus, it suffices to show that the support of any ergodic u-state contains
a. By Proposition 3.1, the support of m consists of entire unstable leaves. So,
it suffices to prove that every strong unstable leaf intersects the stable manifold

Ŵ s(a) of the attractor. By hypothesis, every strong unstable leaf intersects Ws(ℓ).

Moreover, Ws(ℓ) is the union of Ŵ s(a) with the strong stable leaf through the
repeller r. If a strong unstable leaf L intersects Ws(r) then its forward orbit ac-
cumulates on Wu(r) and, in particular, on hu(r). Since ℓ is in general position,
hu(r) 6= hs(r) and so hu(r) belongs to the stable manifold of a. Hence, in any case,

L does intersect Ŵ s(a). This completes the argument. �

Consider the four points as = hs(a), au = hu(a), rs = hs(r), ru = hu(r) in ℓ′.
For ρ, ε > 0 small, and ζ ∈ ℓ′, denote

Ws
ρ(ℓ

′) = ∪ξ∈ℓ′W
s
ρ(ξ) and V cs

ε (ζ) = ∪ξ∈Bc
ε(ζ)

Ws
ρ(ξ).

Let B̃ be a cs-block over Wu
loc(a) (Lemma 6.8). Then for n large, f−n(B̃) intersects

Wu
loc(as) in a set D̃∗

1 with positive Lebesgue measure, and we may choose a cs-block

B1 ⊂ f−n(B̃) over a u-disk D̃1 ⊃ D̃∗
1 such that

Wu
2τ (ζ) ∩ B1 6= ∅ for all ζ ∈ Ws

ρ(ℓ
′) \ V cs

ε (rs).

We think of the union Wu
2τ (V

cs
ε (rs)) of the local unstable manifolds through the

local center stable manifold of rs as the gap of B1 along the center direction. See
Figure 3.

Dually, consider a cs-block B2 ⊂ f−n(B̃) over a u-disk D̃2 ⊂ Wu(a) such that

Wu
2τ (ζ) ∩ B2 6= ∅ for all ζ ∈ Ws

ρ(ℓ
′) \ V cs

ε (ru).

Again, the union Wu
2τ (V

cs
ε (ru)) of the local unstable manifolds through the local

center stable manifold of ru is the gap of B2 along the center direction. Moreover,
we may fix δ0 > 0 such that, for any ζ ∈ Ws

ρ(ℓ
′), either

mu(Wu
2τ (ζ) ∩ B1) > δ0 or mu(Wu

2τ (ζ) ∩ B2) > δ0.

This is, in precise terms, what we meant when we announced that the union B1∪B2

of the two cs-blocks would cover the whole center direction.
Now consider a new cs-block B defined as the union of

(Wu
2τ (ξ) ∩ B2) ∪ (Wu

2τ (ξ) ∩ B1)
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a

r

as

rs

au

ru

ℓ ℓ′

W s

W u

N/Wc

Figure 3.

over all ξ ∈ W s
ρ (ℓ

′)\
(
V cs
ε (rs)∪V cs

ε (ru)
)
. In other words, B is obtained from B1∪B2

by removing the two gaps. Thus, B = B1 ∪ B2 with B1 ⊂ B1 and B2 ⊂ B2. We are
going to show that arbitrarily large iterates of any u-disk intersect both connected
components of B on positive measure subsets.

Lemma 6.12. Given any u-disk D and any positive volD-measure subset D∗ there
exists ζ ∈ D∗ and k arbitrarily large such that

volfk(D)

(
Wu

2τ (f
n(ζ)) ∩ fk(D∗) ∩ Bi

)
> 0 for both i = 1, 2.

Proof. It is no restriction to suppose every point of D∗ is a Lebesgue density point.
Fix ε > 0 small (the precise choice will be given later). Take any point x ∈ D∗ and
let r > 0 small enough so that volD(D∗

r) > (1 − ε) volD(Dr), where Dr is the disk
of radius r around x and D∗

r = Dr ∩D∗. By Proposition 6.9 and Remark 4.3 there
exists b1 > 0, independent of x and r, such that

volD(D∗
r ∩ f−ni(B1)) ≥ b1 volD(D∗

r ) ≥ b1(1− ε) volD(Dr)

for a sequence ni → ∞. Let ρ > 0 be slightly smaller than r, so that

volD(Dρ) > (1− ε) volD(Dr).

Then, for any ni sufficiently large and any y ∈ Dρ, we have f−ni(Wu
loc(f

ni(y))) ⊂
Dr. Since the local unstable manifold of fni(y) cuts across both B1 and B2, this
means that we can associate to y ∈ D∗

ρ ∩ f−ni(B1) the following subsets of Dr:

D1
i (y) = f−ni(Wu

loc(f
ni(y)) ∩ B1) and D2

i (y) = f−ni(Wu
loc(f

ni(y)) ∩ B2).

By bounded distortion, there exists κ = κ(f) > 0 such that

volD(D2
i (y)) ≥ κ volD(D1

i (y)) for every y and every i.

We also denote byD1
i andD2

i the (disjoint) unions ofD
1
i (y) andD2

i (y), respectively,
over all y ∈ D∗

ρ ∩ f−ni(B1). Then, the previous inequality gives

volD(D2
i ) ≥ κ volD(D1

i ) for every i.

By Proposition 6.9 and Remark 6.10, there exists a sequence (ni)i of positive inte-
gers and there exists b1 > 0 such that

volD(D∗
ρ ∩ f−ni(B1)) ≥ b1 volDρ

(D∗
ρ) ≥ b1(1− ε)2 volD(Dρ).

Consequently,

volD(D1
i ) ≥ b1(1− ε)2 volD(Dρ) ≥ b1(1− ε)3 volD(Dr).
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This implies that volD(D2
i ) ≥ b2 volD(Dr), where the constant b2 > 0 is indepen-

dent of i and the choice of r. Now, suppose the lemma is false. Then D2
i (y) ∩D∗

is empty, for every y ∈ D∗
ρ ∩ f−ni(B1), that is, D2

i ∩ D∗ = ∅. It follows that
volD(D∗

r ) ≤ (1 − b2) volD(Dr). This contradicts the choice of D∗
r at the beginning

of the proof, as long as we fix ε < b2. The proof of the lemma is complete. �

Proof of Proposition 6.4. Let hcs : D1 → D2 be a cs-holonomy between u-disks D1

and D2. Let D∗
1 ⊂ D1 be a positive volD1

-measure subset and D∗
2 = hcs(D∗

1). We
want to prove that volD2

(D∗
2) is also positive. By Lemma 6.12, there exists ζ ∈ D∗

1

and k ≥ 1 such that

(23) volfk(D)

(
Wu

2τ (f
k(ζ)) ∩ fk(D∗

1) ∩ Bi
)
> 0 for both i = 1, 2.

Notice that for k big enough, Wu
2τ (f

k(ζ)) and Wu
2τ (f

k(hcs(ζ))) are contained in
nearby cu-disks. That is because the stable foliation is uniformly contracting. Then
Wu

2τ (h
cs(ζ)) ∩ Ws

ρ(ℓ
′) 6= ∅. This implies Wu

2τ (h
cs(ζ)) ∩ B̃1 6= ∅ or Wu

2τ (h
cs(ζ)) ∩

B2 6= ∅. Since B̃1,B2 are cs-blocks, whose cs-foliations are uniformly absolutely
continuous, from (23) one gets that

volfk(D2)

(
Wu

2τ (f
k(hcs(ζ))) ∩ fk(D∗

2) ∩ Bi
)
> 0

for either i = 1 or i = 2. This implies that volD2
(D∗

2) > 0. Thus, the center stable
foliation is absolutely continuous, as claimed. �

7. Robust absolute continuity

Here we use the results in the previous section to give examples of open sets of
diffeomorphisms with absolutely continuous center stable/unstable foliations.

7.1. Mañé’s example. Mañé [30] constructed a C1 open set of diffeomorphisms
U such that every f ∈ U is partially hyperbolic (but not hyperbolic), dynamically
coherent, and transitive. From Proposition 6.3 one gets that every Ck, k > 1
diffeomorphism f in some non-empty C1 open subset U ′ has absolutely continuous
center stable foliation. To explain this, let us recall some main features in Mañé’s
construction.

One starts from a convenient linear Anosov map A : T3 → T
3 with eigenvalues

0 < λ1 < λ2 < 1 < λ3. Let p be a fixed point of A and ρ > 0 be small. One deforms
A inside the ρ-neighborhood of p, so as to create some fixed point with stable index
1, while keeping the diffeomorphism unchanged outside Bρ(p). Mañé [30] shows
that this can be done in such a way that the diffeomorphism f0 : T3 → T

3 thus
obtained is partially hyperbolic, with splitting Es ⊕Ec⊕Es where all factors have
dimension 1, and every diffeomorphism in some C1 neighborhood U is dynamically
coherent and transitive. The presence of periodic points with both stable indices
1 and 2 ensures that f0 is not Anosov. Bonatti, Viana [19] observed that every
Ck, k > 1 diffeomorphism f ∈ U has mostly contracting center direction. Here,
as well as in the steps that follow, one may have to reduce the neighborhood U .
Then Bonatti, Dı́az, Ures [16] showed that the unstable foliation of every f ∈ U
is minimal. According to [19], this implies that every Ck, k > 1 diffeomorphism
f ∈ U admits a unique physical measure, whose basin contains Lebesgue almost
every point. The non-expansion condition in Proposition 6.3 can be checked as
follows.

A crucial observation is that the center stable bundle Ec ⊕ Es is uniformly
contracting outside Bρ(p), for all diffeomorphisms in a neighborhood, because f0 =
A outside Bρ(p). Let q be another fixed or periodic point of A and assume ρ was
chosen much smaller than the distance from p to the orbit of q. Then q remains
a periodic point for f0, with stable index 2 and stable manifold of size ≥ 5ρ.
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Let qf denote the hyperbolic continuation of q for every f in a neighborhood of
f0: qf is a periodic point with stable index 2 and stable manifold of size ≥ 4ρ.
The fact that Ec ⊕ Es is uniformly contracting outside Bρ(p) also implies that
fn(Wcs

ρ (x)) ⊂ Wcs
2ρ(f

n(x)) for all x ∈ T
3 and n ≥ 0. This proves that f is non-

expanding along the center direction, and so we may apply Proposition 6.3 to
conclude that the center stable foliation of every f near f0 is absolutely continuous.

We ignore whether the center unstable foliation and the center foliation are
absolutely continuous or not in this case. However, in the next section, a different
construction allows us to give examples where all three invariant foliations are
robustly absolutely continuous.

7.2. Robust absolute continuity for all invariant foliations. Here we prove
Theorem E and use it to deduce Theorem B. We begin with an intermediate result:

Proposition 7.1. Let f0 : N → N be a Ck, k > 1 skew-product f0(x, θ) =
(g0(x), h0(x, θ)), where g0 is a transitive Anosov diffeomorphism. Assume that
f0 is accessible and has some periodic center leaf in general position. Then there
exists a Ck neighborhood V of f0 such that for every f ∈ V, the center stable, center
unstable, and center foliation are absolutely continuous.

Proof. Every skew-product has absolutely continuous center stable and center un-
stable foliation and is robustly dynamically coherent (by [28]; the center foliation
of a partially hyperbolic skew-product is always plaque expansive). In particular,
f0 satisfies all the hypotheses of Theorem D. The presence of a Morse-Smale center
leaf prevents f0 from being conjugate to a rotation extension. Thus, the center di-
rection is mostly contracting in a whole neighborhood of f0. The assumption that
g0 is transitive also ensures that every strong unstable leaf intersects Ws(ℓ). So, we
are in a position to apply Corollary 6.5 to conclude that the center stable foliation
is robustly absolutely continuous. The same reasoning applied to the inverse of f0
gives that the center unstable foliation is also robustly absolutely continuous. From
the following general fact we get that the center foliation is also robustly absolutely
continuous:

Lemma 7.2 (Pugh, Viana, Wilkinson [39]). Let F1, F2, F3 be foliation in some
smooth manifold N such that F1 and F2 are transverse at every point and the
leaves of F3 are coincide with the intersections of leaves of F1 and F2: for every
point x ∈ N , F3(x) = F1(x) ∩F2(x). If F1 and F2 are absolutely continuous then
so is F3.

Proof. Suppose D1, D2 are two disks transverse with F3, and h3 : D1 → D2 is the
holonomy map induced by F3. Then F1 and F2 induce two foliations F̂1

i and F̂2
i

on Di, i = 1, 2, and these two foliations absolutely continuous in Di. Fix l1 ⊂ D1 a
leaf of F̂2

1 , and denote by l2 = h3(l1), then l2 is a leaf of F̂2
2 . Since the foliations F̂

1
i ,

i = 1, 2 are absolutely continuous, one has that the disintegration of the Lebesgue

measure volD1
along the foliation F̂1

1 is

volD1
= ϕx(y)d volF̂1

1
(x)(y)d voll1(x), where ϕx(y) > 0

and the disintegration of the Lebesgue measure of D2 along the foliation F̂1
2 is

volD2
= φx(y)d volF̂1

2
(x)(y)d voll2(x), where φx(y) > 0.

Now for any set ∆1 ⊂ D1 with volD1
(∆1) > 0, denote its image for h3 by ∆2. By

the above formulas for the disintegration, there is a positive voll1 measure subset
Γ1 ⊂ l1 such that for any x ∈ Γ1, one has

volF̂ 1

1
(x)(∆1 ∩ F̂ 1

1 (x)) > 0.
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Denote Γ2 = h3(Γ1) ⊂ l2. By the absolute continuity of F1 and F2, voll2(∆2) > 0

and volF̂ 1

2
(x)(∆2 ∩ F̂ 1

2 (x)) > 0 for any x ∈ Γ2. This implies volD2
(∆2) > 0, and so

the proof is complete. �

This completes the proof of Proposition 7.1. �

To complete the proof of Theorem E it suffices to note that any skew-product
f0 with a Morse-Smale center leaf, as in the statement of the theorem, is approxi-
mated by skew-products with center leaves in general position: all that is missing
is property (b) in the definition of general position, and this can be achieved by a
Ck small perturbation inside the space of skew-products. Then Theorem E follows
from Proposition 7.1.

Now Theorem B is deduced as follows. For any skew-product f0 as in the state-
ment, Let U be an open set that accumulates on f0 as given by Theorem E: for
any f ∈ U the center stable, center unstable, and center foliations are absolutely
continuous. Then let V ⊂ U be an open subset such that every f ∈ V is accessible
([32]). Then every f ∈ V has finitely many physical measures, with basins contain-
ing almost every point. The Morse-Smale behavior on the center leaf ℓ prevents f
from being conjugate to a rotation extension. Thus, we are in case (b) of Theo-
rem D. From the fact that ℓ contains a unique periodic attractor we also get that
the physical measure is unique (see Theorem 5.6). The same argument applies for
f−1. This finishes the proof of Theorem B.

7.3. Volume preserving systems. Here we prove Theorem C and a pair of re-
lated results. Based on these, we also describe a, partially conjectural, scenario for
absolute continuity of foliations of conservative and dissipative systems.

Part (1) of Theorem C is a direct consequence of the main result of Baraviera,
Bonatti [15]. Part (2) is given by the following result:

Lemma 7.3. For any f ∈ W0 with λc(f) > 0, the center foliation and the center
stable foliation are not upper leafwise absolutely continuous.

Proof. Fix c ∈ (0, λc(f)). Then, by the Birkhoff ergodic theorem, the set

Γc,1 = {x ∈ N : lim
1

n

n∑

i=1

log ‖Df−1 | Ec(f i(x))‖−1 ≥ c}

has positive volume. Then, by Proposition 3.6, there is n0 ≥ 1 such that the
intersection of any center leaf with Γc,1 has at most n0 points. In particular,
the intersection has zero volume inside the center leaf. So, the center foliation
of f is not upper leafwise absolutely continuous. Next, observe that the set Γc,1

consists of entire strong stable leaves. So, the intersection of Γc,1 with any center
stable leaf consists of no more than n0 strong stable leaves. This implies that
the intersection has zero volume inside the center stable leaf. Consequently, the
center stable foliation is not upper leafwise absolutely continuous. In particular,
we get that the center foliation and the center stable foliation are not absolutely
continuous, as claimed. �

Now we prove part (3) of the theorem. Let p ∈ M be a periodic point of g0 and
a ∈ M be a homoclinic point associated to p. For simplicity, we take the periodic
point to be fixed. Let us begin by constructing W1. The first step is to approximate
f0 by some diffeomorphism f1 such that λc(g) > 0 for any g in a C1 neighborhood.
This can be done by the perturbation method in [15]; the perturbation may be
chosen such that f1 = f0 on a neighborhood of {p} × S1, and we assume that this
is the case in what follows. The second step is to find f2 arbitrarily close to f1 such
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that, denoting by ℓp and ℓa the center leaves associated to the continuation of p
and a,

• every strong unstable leaf of f2 intersects W s(ℓp);
• the restriction of f2 to ℓp is a Morse-Smale diffeomorphism, with a single
attractor ξ and a single repeller η

• and Wu(η) and W s(ξ) are in general position (we call this non-strong con-
nection).

These properties remain valid in a small neighborhood of f2. As a final step, we
use [16, 27, 26] to find a diffeomorphism f3 arbitrarily close to f2 and such that
the strong stable and the strong unstable foliations are minimal in a whole C1

neighborhood of f3. We take W1 to be such a neighborhood. By [19], for every
diffeomorphism f ∈ W the inverse f−1 has mostly center direction. Then, by
[9], the same is true in a whole Ck neighborhood Wf in the space of all (possibly
dissipative). diffeomorphisms. Hence, we are in a position to apply Corollary 6.5
to conclude that the center unstable foliation is absolutely continuous for every
diffeomorphism in Wf .

This finishes the proof of Theorem C. The next proposition is a variation of
results in [14] where center foliations are replaced by center stable or center unstable
foliations.

Proposition 7.4. Let f0 be as in Theorem A, where M is a surface, and let f
be any C1 nearby accessible, volume preserving diffeomorphism with λc(f) = 0. If
either the center stable foliation or the center unstable foliation is absolutely then
f is smoothly conjugate to a rotation extension and the center foliation is a smooth
foliation.

Proof. Suppose Wcs is absolutely continuous. Then we may apply Theorem D. In
this case Lebesgue measure is a Gibbs u-state with zero center exponent, and so
we are in the elliptic case (a) of the theorem. In particular, the center foliation is
leafwise absolutely continuous. Then we can apply [14] to conclude that the center
foliation is smooth and f is smoothly conjugate to a rigid model. In present case,
where the center fiber bundle is trivial, we get that f is topologically conjugate to
a rotation extension (cf. Remark 4.3). �

Remark 7.5. Suppose f is partially hyperbolic, dynamically coherent, volume pre-
serving, and all the center exponents are negative at almost every point. Then the
center stable foliation of f is upper leafwise absolutely continuous. This is a fairly
direct consequence of Pesin theory. Indeed, if all the Lyapunov exponents are neg-
ative then the Pesin local stable manifold of almost every point is a neighborhood
of the point inside its center stable leaf. Then the absolute continuity of Pesin
laminations [35] implies that the center stable foliation is upper leafwise absolutely
continuous.

We close with a couple of conjectures on the issue of absolute continuity. The
first one deals with dissipative systems.

Conjecture 7.6. Let k > 1 and Ck be the space of partially hyperbolic, dynamically
coherent Ck diffeomorphisms with mostly contracting center direction. Then, for
an open and dense subset,

• if there is a unique physical measure then the center stable foliation is
absolutely continuous;

• if there is more than one physical measure then the center stable foliation
is not upper leafwise absolutely continuous.

Examples of the second situation will appear in a forthcoming paper [49].
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λc > 0: Wc and Wcs not abs cont

Wcu abs cont, generically ?

λc < 0: Wc and Wcu not abs cont

Wcs abs cont, generically ?

λc = 0

all foliations smooth

(rigidity)
all foliations generically
not abs cont

Figure 4.

Conjecture 7.7. Let k > 1 and Vk be the space of partially hyperbolic, dynamically
coherent, volume preserving Ck diffeomorphisms whose center Lyapunov exponents
are negative at almost every point. Then, for an open and dense subset, the center
stable foliation is absolutely continuous.

Figure 4 outlines a scenario for these issues in a relevant special case, namely
near the map f0 = g0 × id as in Theorem A. Accessibility is assumed throughout
(but is not needed for the negative results in λc 6= 0). Generically means for open
and dense in Ck topology, k ≥ 1. Upper leafwise absolute continuity of the center
unstable is known for λc > 0, as we have seen, and we have also found an open
subset with (full) absolute continuity of the center unstable.
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