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Symbolic extensions VS Smoothness

M smooth compact manifold of dimension d,
T:M— MacC" map with areal r > 1.
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Symbolic extensions VS Smoothness

M smooth compact manifold of dimension d,
T:M— MacC" map with areal r > 1.

Goal
Prove the existence of symbolic extensions and more precisely estimate the
symbolic extension entropy, hsex(T) := infs hop(S), in terms of

@ the topological entropy of T;

@ the smoothness, i.e. the parameter r;

@ the growth of the first derivative.
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Overview of known results and the Dow-New conjecture

e (™ dynamical systems always admit principal symbolic extensions, i.e.
there exist symbolic extensions 7 : (Y,S) — (X, T) s.t.
Vv e M(Y,S), h(m.v) = h(v) (Boy-Fie-Fie);
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e Examples of C! dynamical systems without symbolic extension
(Dow-New, Cat-Tah, Asa, Dia-Fis, B.);
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Overview of known results and the Dow-New conjecture

e (™ dynamical systems always admit principal symbolic extensions, i.e.
there exist symbolic extensions 7 : (Y,S) — (X, T) s.t.
Vv e M(Y,S), h(m.wv) = h(v) (Boy-Fie-Fie);

e Examples of C! dynamical systems without symbolic extension
(Dow-New, Cat-Tah, Asa, Dia-Fis, B.);

e Examples of C" (1 < r < +00) dynamical systems with
hsex(T) = in'FS htop(S) > htop(T) (Dow—New, B)

Conjecture (Dow-New)

Any C" map T : M — M with r > 1 admits a symbolic extension.
Moreover

dR(T)

hoox(T) < heop(T) +

with R(T) = lim, £ log™ [ DT"| o

v
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SEX theorem

e Extension entropy of a symbolic extension 7 : (Y,S) — (X, T)

AT,  M(X,T) — RT
uw +—  sup h(v)

T« V=L

@ Usc envelope of an upper bounded function

F:MX,T) - RF

v +— limsupf(v)
v
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SEX theorem

e Extension entropy of a symbolic extension 7 : (Y,S) — (X, T)

hZ,  M(X,T) — Rt
uw +—  sup h(v)

T V=L
@ Usc envelope of an upper bounded function
F:MX,T) - RF
v +— limsupf(v)
vV
Theorem (Boy-Dow)
Let (hy)x be an entropy structure of (X, T). The functions hZ

ext
—

the affine usc functions g satisfying limy g +h — hy = g.

— h are
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SEX theorem

e Extension entropy of a symbolic extension 7 : (Y,S) — (X, T)

hZ,  M(X,T) — Rt
uw +—  sup h(v)

TxV=[4
@ Usc envelope of an upper bounded function
F:MX,T) - RF
v +— limsupf(v)
Vi
Theorem (Boy-Dow)

Let (hy)x be an entropy structure of (X, T). The functions hZ,, — h are

——

the affine usc functions g satisfying limy g +h — hy = g.

Observe that if (X, T) has a symbolic extension, then h is a difference of
nonnegative affine usc functions.
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Continuity of the entropy function VS smoothness

@ C* dynamical systems : h is usc (New);
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Continuity of the entropy function VS smoothness

@ C° dynamical systems : h is usc (New);

o C! examples without symbolic extension : h is not a difference of
nonnegative usc functions;
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Continuity of the entropy function VS smoothness

@ C° dynamical systems : h is usc (New);

o C! examples without symbolic extension : h is not a difference of
nonnegative usc functions;

o C° dynamical systems : h is a non decreasing limit of nonnegative
affine usc functions and this property characterizes the entropy of
continuous dynamical systems (Dow-Ser).
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Continuity of the entropy function VS smoothness

@ C° dynamical systems : h is usc (New);

o C! examples without symbolic extension : h is not a difference of
nonnegative usc functions;

o C° dynamical systems : h is a non decreasing limit of nonnegative
affine usc functions and this property characterizes the entropy of
continuous dynamical systems (Dow-Ser).

Conjecture J

For any C" map with r > 1, h is a difference of nonnegative usc functions.
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Continuity of the entropy function VS smoothness

@ C° dynamical systems : h is usc (New);

o C! examples without symbolic extension : h is not a difference of
nonnegative usc functions;

o C° dynamical systems : h is a non decreasing limit of nonnegative
affine usc functions and this property characterizes the entropy of
continuous dynamical systems (Dow-Ser).

Conjecture

For any C" map with r > 1, h is a difference of nonnegative usc functions.

v

Question

Do there exist smooth dynamical systems with h usc and
hsex(T) > htop(T)7?
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—_—

Find an affine usc function g satisfying limy g + h — hy = g.
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—_—

Find an affine usc function g satisfying limy g + h — hy = g. In the
smooth context we have a candidate for g :

Lemma

SixFiue [0 X (x)du(x) is an affine upper semicontinuous function
on M(M, T).
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—_—

Find an affine usc function g satisfying limy g + h — hy = g. In the
smooth context we have a candidate for g :

Lemma

SixFiue [0 X (x)du(x) is an affine upper semicontinuous function
on M(M, T).

Proof :

S = [ Y dnt)

i

1
_ / im  maxlog™ [A*D, T dju(x) (Oseledets)
n
1
= Iim/ml?xlog+ IAKD, T7||icd pa(x)
n n

= inf,11/mlflx|ogJr [AKD, T cdpu(x) (subadditivity)
n
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Statements

Question

+ —_—
Does the function g = zr:’fi" satisfies limyg+h—hy =g 7

veM(M,T),
l, number of nonnegative Lyapunov exponents of v.
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Statements

Question J

+ —_—
Does the function g = zr:’fi" satisfies limyg+h—hy =g 7

veM(M,T),
l, number of nonnegative Lyapunov exponents of v.
Main Proposition (B.)

Ve M(M, T)Vy>030,>03k, €N
Vv e M (M, T) with dist(v, ) < 6,

(h—he)() < — (Z x?(u)—Zx?(V)) +

June 16, 2011 7/ 18
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Statements

Question

+ —_—
Does the function g = zr:’fi" satisfies limyg+h—hy =g 7

veM(M,T),
l, number of nonnegative Lyapunov exponents of v.
Main Proposition (B.)

Ve M(M, T)Vy>030,>03k, €N
Vv e M (M, T) with dist(v, u) < 6, with |, =0,1 or d

(h—hy)() < - I_V : <Z hxi (1) — Zx?(l/)) +v
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Statements

Question J

+ —_—
Does the function g = zr:’fi" satisfies limyg+h—hy =g 7

veM(M,T),
l, number of nonnegative Lyapunov exponents of v.
Main Proposition (B.)

Ve M(M, T) 30, >0 3k, €N
Vv e M (M, T) with dist(v, u) < 6, with |, =0,1 or d

(h—h)0) <2

(i -vo)
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David Burguet (E.N.S. Cachan, France) Symbolic extensions on surfaces in interi



Corollary (Dow-Maa)

U —_—
ext

_ xt
h_r—l'

For any C" interval map with r > 1 there exists a symbolic extension with
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Corollary (Dow-Maa)

For any C" interval map with r > 1 there exists a symbolic extension with

T _ xt
ext_h— r—1-

Corollary (B.)

For any C" surface diffeomorphim (resp. noninvertible map) with r > 1

. . . . war 2 Zi X;r
there exists a symbolic extension with hT, — h = XL (resp. % ).
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Corollary (Dow-Maa)

For any C" interval map with r > 1 there exists a symbolic extension with

i s
hge — h = 25.

Corollary (B.)

For any C" surface diffeomorphim (resp. noninvertible map) with r > 1

. : . : = Yixt
there exists a symbolic extension with hT, — h = XL (resp. % ).

The estimates of the extension entropy of C" interval maps and C” surface

diffeomorphisms are sharp according to the pathological examples of B. and
Dow-New. More precisely, for these dynamical systems (M, T), there exists
an invariant measure  such that (h%, — h)(p) > -2 R(T) for all symbolic
extensions 7 : (Y,S) — (X, T).

David Burguet (E.N.S. Cachan, France) June 16, 2011 8 /18



Corollary (Dow-Maa)

For any C" interval map with r > 1 there exists a symbolic extension with

i s
hge — h = 25.

Corollary (B.)

For any C" surface diffeomorphim (resp. noninvertible map) with r > 1

(50),

0
ae — h= =2 (resp. ——

ext

there exists a symbolic extension with h

The estimates of the extension entropy of C" interval maps and C” surface

diffeomorphisms are sharp according to the pathological examples of B. and
Dow-New. More precisely, for these dynamical systems (M, T), there exists
an invariant measure  such that (h%, — h)(p) > -2 R(T) for all symbolic
extensions 7 : (Y,S) — (X, T).

This implies Dow-New Conjecture in dimension 1 and 2.
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Corollary (Dow-Maa)

For any C" interval map with r > 1 there exists a symbolic extension with

i s
hge — h = 25.

Corollary (B.)

For any C" surface diffeomorphim (resp. noninvertible map) with r > 1

. : . : = Yixt
there exists a symbolic extension with hT, — h = XL (resp. % ).

The estimates of the extension entropy of C" interval maps and C” surface

diffeomorphisms are sharp according to the pathological examples of B. and
Dow-New. More precisely, for these dynamical systems (M, T), there exists
an invariant measure  such that (h%, — h)(p) > -2 R(T) for all symbolic
extensions 7 : (Y,S) — (X, T).

This implies Dow-New Conjecture in dimension 1 and 2.

Let's go sketch the proof of the main Proposition for....[, = 1.
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Newhouse local entropy and local volume growth
o :[0,1] = M of class C" with 1 < k < d, e >0and F C M,

1
v(o,€, F) = limsup = In™ sup/ IAKD, (T" 0 o) ||xdA(y)
n n x€F Jo—1B(x,n,e)
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Newhouse local entropy and local volume growth
o :[0,1] = M of class C" with 1 < k < d, e >0and F C M,

n xeF

1
v(o,e,F) = limsup = In" sup/ IAKD, (T" 0 o) ||xdA(y)
n o~1B(x,n,e)

Definition
ve M(M,T),

v(v,e) ;== lim inf sup v(o, e Fy)
a—1y(Fy)>a o0, =M

,,,,,
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Newhouse local entropy and local volume growth
a:[O,l]k—>I\/Iofc|assC’with1§k§d,e>Oand FcM,

1

v(o,e,F) = limsup = In" sup/ IAKD, (T" 0 o) ||xdA(y)
n n x€F Jo—1B(x,n,e)

Definition

ve M(M,T),

v(v,e) ;== lim inf sup v(o, e Fy)
a—1y(Fy)>a o0, =M

AAAAA

Theorem (New)
Ve >0, Vv € M(M, T),

AN (1, €) < v(v,€)

V.
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Newhouse local entropy and local volume growth
a:[O,l]k—>I\/Iwith1§k§d,e>0,FCI\/Iandx>O.

. 1

V(U7 67 F7 X) = Ilm Sup - |n+ sup/ U_IB(x,n,e) H/\k(Dy TnOO-)de)\(y)
no M xe€FJn(Liog||D(Troo)|~x}

Definition

veE MM, T),

v(v,e) := lim inf sup v(o,€, Fa, x1(v))
a=1ly(Fa)>a a:[0,1]'v =M
maxg—1,...r [|DKo 0o <1

.....

Theorem (New)
Ve >0, Vv € M(M, T),

ANe (v, €) < v(v, €)

v
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Proposition

Let (ex)x be a sequence of positive numbers decreasing to 0. Then the
sequence of functions h — hNe% (., ¢) defines an entropy structure.
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Proposition
Let (ex)x be a sequence of positive numbers decreasing to 0. Then the
sequence of functions h — hNe% (., ¢) defines an entropy structure.

To prove the Main Proposition for /, = 1 it is enough to prove the
following one

Proposition
Vi€ M(M, T) 36, >03e, €N
Vv e M (M, T) with dist(v, p) <, and |, =1

Ve S —= ()~ ¢ )

11/ 18
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Reparametrization Lemma

Lemma

Let T: M — M be aC" map with r > 1, then de > 0 s.t.
Vo : [0,1] = M with max;<x<, |[D¥o|| <1

Vx >0VneNVxe M

3Fn = (én : [0,1] — [0,1]) a family of affine maps satisfying

June 16, 2011 12 / 18
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Reparametrization Lemma

Lemma

Let T: M — M be aC" map with r > 1, then de > 0 s.t.
Vo : [0,1] = M with max;<x<, |[D¥o|| <1

Vx >0VneNVxe M

3Fn = (én : [0,1] — [0,1]) a family of affine maps satisfying

o [[(T"ooo¢n)|e <1;
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Reparametrization Lemma

Lemma

Let T: M — M be aC" map with r > 1, then de > 0 s.t.
Vo : [0,1] = M with max;<x<, |[D¥o|| <1

Vx >0VneNVxe M

3Fn = (én : [0,1] — [0,1]) a family of affine maps satisfying

o [(T" oo 0 ¢n)llee <1;
© Ug,ez, n((0,1]) D o= (B(x, n,e) N {7 log [(T" 0 o)l = x});
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Reparametrization Lemma

Lemma

Let T: M — M be aC" map with r > 1, then de > 0 s.t.
Vo : [0,1] = M with max;<x<, |[D¥o|| <1

Vx >0VneNVxe M

3Fn = (én : [0,1] — [0,1]) a family of affine maps satisfying

o [(T" oo 0 ¢n)llee <1;
© Ug,ez, n((0,1]) D o= (B(x, n,e) N {7 log [(T" 0 o)l = x});

log §Fn -1
S (D 0Tl ).

n ~

June 16, 2011 12 / 18
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Proof of the Main Proposition for /, = 1 assuming the
Reparametrization Lemma

Let n € M(M, T), we want to prove there exist §, > 0 and ¢, > 0 s.t. for
ergodic measure v §,-close to

o) 5 (G 00— @)
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Proof of the Main Proposition for /, = 1 assuming the
Reparametrization Lemma

Let n € M(M, T), we want to prove there exist §, > 0 and ¢, > 0 s.t. for
ergodic measure v §,-close to

(- W)

V(V7 6#) S

o Choice of §,, :

- . 1 n
) =inf [ tog" DT du()
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Proof of the Main Proposition for /, = 1 assuming the
Reparametrization Lemma

Let n € M(M, T), we want to prove there exist §, > 0 and ¢, > 0 s.t. for
ergodic measure v §,-close to

(- W)

V(V7 6#) S

o Choice of §,, :

) =inf > [ 1og" DT dtx) = [ tog” 0, Tdn(x)
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Proof of the Main Proposition for /, = 1 assuming the
Reparametrization Lemma

Let n € M(M, T), we want to prove there exist §, > 0 and ¢, > 0 s.t. for
ergodic measure v §,-close to

V6 S 1 () 1 ()

o Choice of §,, :
) =inf > [ 1og" DT dtx) = [ tog” 0, Tdn(x)

Choose 6, > 0 s.t. for v §,-close to 11 so that

/ log™ | D T dur(x) ~ / log™ 1D T dja(x)
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o Choice of ¢, : Apply the Reparametrization Lemma to T, you get ¢,
such that for all subset F of M, for all o : [0,1] — M with
maxi<k<, | D¥oll < 1,

1 1 (12
v(0, €, F,Xf(z/)) < lim,= sup <n

log™ | D7, T — X3
Pl og" [|IDrre Tl — X7 (V))

k=0
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o Choice of ¢, : Apply the Reparametrization Lemma to T, you get ¢,
such that for all subset F of M, for all o : [0,1] — M with
maxi<k<, | D¥oll < 1,

1 1 (122
v(o,eu, Foxi (V) S lim,~ sup <n > logt [[Dre, T - XT(V))
X k=0

@ Choice of F, : For all @ < 1 we choose by the Ergodic Theorem a
Borel set F, with v(F,) > a s.t. (% > o qlog® ||DTkXTH)
30y n
converges uniformly in x € F to [log™ || Dy T||dv(x).
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o Choice of ¢, : Apply the Reparametrization Lemma to T, you get ¢,
such that for all subset F of M, for all o : [0,1] — M with
maxi<k<, | D¥oll < 1,

1 1 (122
v(o,eu, Foxi (V) S lim,~ sup <n > logt [[Dre, T - XT(V))
X k=0

@ Choice of F, : For all @ < 1 we choose by the Ergodic Theorem a
Borel set F, with v(F,) > a s.t. (% > o qlog® ||DTkXTH)
30y n
converges uniformly in x € F to [log™ || Dy T||dv(x).

e Conclusion : We get finally for ergodic measures v J,,-close to u,

) 5 2 ([log ID:TIdv 00 - 37 )

L (- i)

A

r—1
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Sketch of Proof of the Reparametrization Lemma

For a C" curve o : [0,1] — RY, we want estimate the local length, i.e the
Iength of 0|o—1(B(0,1))'

1. Yomdin's approach

Lemma (Gromov-Yomdin)

Assume ||[D"o||oo < 1 then 3F = (¢ : [0,1] — [0,1]) a family of (s.a.)
maps s.t.
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Sketch of Proof of the Reparametrization Lemma

For a C" curve o : [0,1] — RY, we want estimate the local length, i.e the
Iength of 0|o—1(B(0,1))'

1. Yomdin's approach

Lemma (Gromov-Yomdin)
Assume ||[D"o||oo < 1 then 3F = (¢ : [0,1] — [0,1]) a family of (s.a.)
maps s.t.

° |D(o0@)loc <1

° User 4(10,1]) > 071(B(0,1));

David Burguet (E.N.S. Cachan, France) Symbolic extensions on surfaces in interi June 16, 2011 15 / 18



Sketch of Proof of the Reparametrization Lemma

For a C" curve o : [0,1] — RY, we want estimate the local length, i.e the
Iength of 0|o—1(B(0,1))'

1. Yomdin's approach

Lemma (Gromov-Yomdin)
Assume ||[D"o||oo < 1 then 3F = (¢ : [0,1] — [0,1]) a family of (s.a.)
maps s.t.

° |D(o0@)loc <1

o User ¢([0,1]) D o1(B(0,1)),

o {F < C(r,d).
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Sketch of Proof of the Reparametrization Lemma

For a C" curve o : [0,1] — RY, we want estimate the local length, i.e the
Iength of 0"0.—1(5(0’1)).

1. Yomdin's approach

Lemma (Gromov-Yomdin)
Assume ||D"c||oc <1 then 3F = (¢ : [0,1] — [0,1]) a family of (s.a.)
maps s.t.

° |D(o0@)loc <1

o User ¢([0,1]) D o1(B(0,1)),

o #F < C(r,d).

To estimate the local length of a C" general curve, we proceed as follows.
. . 1 . :
Cut the interval [0, 1] into [||D"c||r] + 1 subintervals of size less than

HDl T Reparametrize these intervals by affine contractions ¢. Then we
rolr

have ||D"o o ¢||oc < 1. By applying the above lemma, the local length of o
is bounded from above by HDraH% + 1 up to a multiplicative constant.
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In fact we want estimate the volume of 0\071(3(0,1))“;3”0/”323}.
2. New approach

Lemma

Assume Vt,s € [0,1], |lo’(t) — o'(s)]| < ”ﬂ"’o then 3F a family of
(affine) maps s.t.
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In fact we want estimate the volume of 0\071(3(0,1))“;3”0/”323}.
2. New approach

Lemma
Assume Vt,s € [0,1], |lo’(t) — o'(s)]| < ”ﬂ"’o then 3F a family of
(affine) maps s.t.

® [|D(c o ¢)lloo < 1;
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In fact we want estimate the volume of 0\071(3(0,1))“;3”0/”323}.
2. New approach

Lemma
Assume Vt,s € [0,1], |lo’(t) — o'(s)]| < ”ﬂ"’o then 3F a family of
(affine) maps s.t.

® [|D(c o ¢)lloo < 1;

o User 4(10,1]) D 071(B(0,1));
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In fact we want estimate the volume of 0\071(3(0,1))“;3”0/HQ&,}.
2. New approach

Lemma
Assume Vt,s € [0,1], |lo’(t) — o'(s)]| < ”ﬂ"’o then 3F a family of
(affine) maps s.t.

® [|D(c o ¢)lloo < 1;

o User 4(10,1]) D 071(B(0,1));
e #1F < C(d).
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In fact we want estimate the volume of 0\071(3(071))“%3”0/HQ&,}.
2. New approach

Lemma
Assume Vt,s € [0,1], |lo’(t) — o'(s)]| < IIU!'“’ then 3F a family of
(affine) maps s.t.

° [[D(o 0 ¢)lloo < 1;

o Uger #([0,1]) > 071(B(0,1));
e #1F < C(d).

For a general curve o we proceed as follows. We first apply the following
one parameter version of Gromov-Yomdin Lemma for ¢’ and r — 1 to cut
the interval [0, 1] into subintervals on which ||o’(t) — o’(s)|| < §. Then the
volume U|a—1(B(o,1))m{g§||a/nga} is bounded from above by the number of
subintervals up to a multiplicative constant.
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Lemma (Gromov-Yomdin)

maps s.t.

Assume ||D"o||oc <1 < a then 3F = (¢ : [0,1] — [0,1]) a family of (s.a.)
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Lemma (Gromov-Yomdin)
Assume ||D"o||oc <1 < a then 3F = (¢ : [0,1] — [0,1]) a family of (s.a.)
maps s.t.

® [D(c0¢)lloc <1 ¢ [[D(0” 0 )lloc < §:
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Lemma (Gromov-Yomdin)
Assume ||D"o||oc <1 < a then 3F = (¢ : [0,1] — [0,1]) a family of (s.a.)
maps s.t.

® [D(c0¢)lloc <1 ¢ [[D(0” 0 )lloc < §:

° User #([0,1]) D 071(B(0,1)) + (o')~*(B(0,2a));
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Lemma (Gromov-Yomdin)
Assume ||D"o||oc <1 < a then 3F = (¢ : [0,1] — [0,1]) a family of (s.a.)
maps s.t.

® [D(c0¢)lloc <1 ¢ [[D(0” 0 )lloc < §:

® Uper #(10,1]) D 07(B(0,1)) « (¢')"1(B(0,2a));

e {F < C(r,d).
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Lemma (Gromov-Yomdin)
Assume ||D"o||oc <1 < a then 3F = (¢ : [0,1] — [0,1]) a family of (s.a.)
maps s.t.

® [D(c0¢)lloc <1 ¢ [[D(0” 0 )lloc < §:

® Uper #(10,1]) D 07(B(0,1)) « (¢')"1(B(0,2a));

e {F < C(r,d).

v

We conclude that the volume of U|U_1(B(071))m{§§”0/nga} is bounded from
above by

s
[(%) "4 1 up to a multiplicative constant.
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The induction

We are working in local small charts along the orbit of x :

Top=expra (1) 0 T oexpraiy(e.)

One can choose € small enough ||D*Tplloc <1 forall2<s<r.
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The induction

We are working in local small charts along the orbit of x :

Top=expra (1) 0 T oexpraiy(e.)

One can choose € small enough ||D*Tplloc <1 forall2<s<r.

We put T" = Tpo Tp—10...0T1. Then compute the r-derivative of T"oo.
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The induction

We are working in local small charts along the orbit of x :

Top=expra (1) 0 T oexpraiy(e.)

One can choose € small enough ||D*Tplloc <1 forall2<s<r.

We put T" = Tpo Tp—10...0T1. Then compute the r-derivative of T"oo.

Painful! It involves in particular the s-derivative of T"~1 o o of order less
than r, but they are related with the r derivative by using
Landau-Kolmogorov type inequalities.
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